Proyecto Constructivo de la Subestación Eléctrica de Tracción de Maltzaga.

ANEJO Nº 13. PROGRAMA PARA CÁLCULO DE CONSUMO ELÉCTRICO

Proyecto Constructivo de la Subestación Eléctrica de Tracción de Maltzaga.

ÍNDICE

1. CÁLCULO DEL CONSUMO ELÉCTRICO...... 1

Proyecto Constructivo de la Subestación Eléctrica de Tracción de Maltzaga.

1. CÁLCULO DEL CONSUMO ELÉCTRICO

La finalidad de este documento es describir técnicamente el sistema de gestión de consumo de energía en las subestaciones de tracción.

El documento ha sido desarrollado íntegramente por ETS.

PROYECTO Subestaciones de Tracción

Cálculo del Consumo Eléctrico

INSTALACIÓN:	Subestaciones de Tracción		
CLIENTE: CÓDIGO CLIENTE:			
R. Rodrigo	E. Ayala / J.A. Goitia	J. Acebo	
REALIZADO	REVISADO	APROBADO	

ÍNDICE DE REVISIONES

REV	FECHA (dd/mm/aa)	REALIZADO	REVISADO	APROBADO	MODIFICATION
Α	16/11/09	R.R.O.	E.A.L.	J.A.E.	Edición Inicial
В	14/12/09	R.R.O.	E.A.L. / J.A.G.	J.A.E.	Edición Inicial

TABLA DE CONTENIDOS

1.	INTRODUCCIÓN	4
2.	ADQUISICIÓN DE LOS DATOS DE MEDIDA	5
3.	TRATAMIENTO EN EL PLC DE LOS DATOS DE MEDIDA	6
4.	SUBRUTINA DEL CÁLCULO DE LOS CONSUMOS EN CORRIENTE ALTERNA	9
5.	SUBRUTINA DEL CÁLCULO DE LOS CONSUMOS EN CORRIENTE CONTINUA	18
6.	ALMACENAMIENTO Y GESTIÓN EN EL SCADA	27
7.	VISUALIZACIÓN EN EL SCADA	28

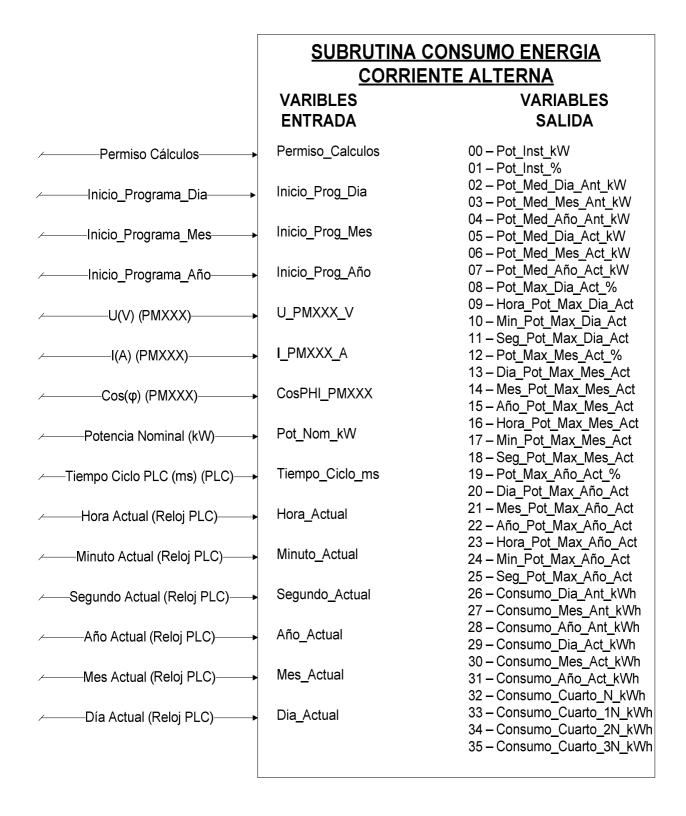
1. INTRODUCCIÓN

La finalidad de este documento es describir técnicamente el sistema de gestión de consumo de energía en las subestaciones de tracción. Este sistema tiene cinco pasos:

- Adquisición de los datos de medida.
- Tratamiento en el PLC de dichos datos.
- Programa Subrutina Cálculo Consumos
- Almacenamiento y gestión de los datos en el SCADA.
- Visualización en el SCADA

2. ADQUISICIÓN DE LOS DATOS DE MEDIDA

Para la adquisición de estos datos se instalará en las celdas de media tensión un analizador de red del tipo PowerLogic de Schneider Electric o similar. Dentro de los diversos analizadores se seleccionará un analizador con buena precisión, y con conexión cableada de valores analógicos o comunicación Modbus.


Se adjuntan dos algoritmos para realizar el cálculo tanto en corriente alterna como en corriente continua para los rectificadores.

Los transformadores de tensión e intensidad instalados deben cumplir la normativa de Iberdrola 72.50.01 Abril de 2003.

3. TRATAMIENTO EN EL PLC DE LOS DATOS DE MEDIDA

En cada PLC se preparará una subrutina única ya sea para corriente alterna o continua que incorporará los algoritmos de cálculo de los consumos, la acumulación de los valores y su memorización.

	<u> </u>	NSUMO ENERGIA E CONTINUA
	VARIBLES ENTRADA	VARIABLES SALIDA
Permiso Cálculos—	Permiso_Calculos	00 – Pot_Inst_kW 01 – Pot_Inst_%
/Inicio_Programa_Dia	Inicio_Prog_Dia	02 – Pot_Med_Dia_Ant_kW 03 – Pot_Med_Mes_Ant_kW
/Inicio_Programa_Mes	Inicio_Prog_Mes	04 – Pot_Med_Año_Ant_kW 05 – Pot_Med_Dia_Act_kW 06 – Pot_Med_Mes_Act_kW
∠——Inicio_Programa_Año——→	Inicio_Prog_Año	07 – Pot_Med_Año_Act_kW 08 – Pot_Max_Dia_Act_%
U(V)	U_V	09 – Hora_Pot_Max_Dia_Act 10 – Min_Pot_Max_Dia_Act
/——I(A)————	I_A	11 – Seg_Pot_Max_Dia_Act 12 – Pot_Max_Mes_Act_% 13 – Dia Pot Max Mes Act
Potencia Nominal (kW)	Pot_Nom_kW	14 – Mes_Pot_Max_Mes_Act 15 – Año_Pot_Max_Mes_Act
—Tiempo Ciclo PLC (ms) (PLC) →	Tiempo_Ciclo_ms	16 – Hora_Pot_Max_Mes_Act 17 – Min_Pot_Max_Mes_Act
Hora Actual (Reloj PLC)	Hora_Actual	18 – Seg_Pot_Max_Mes_Act 19 – Pot_Max_Año_Act_% 20 – Dia Pot Max Año Act
/——Minuto Actual (Reloj PLC)——	Minuto_Actual	21 – Mes_Pot_Max_Año_Act 22 – Año_Pot_Max_Año_Act
Segundo Actual (Reloj PLC)	Segundo_Actual	23 – Hora_Pot_Max_Año_Act 24 – Min_Pot_Max_Año_Act 25 – Seg_Pot_Max_Año_Act
Año Actual (Reloj PLC)	Año_Actual	26 – Consumo_Dia_Ant_kWh 27 – Consumo_Mes_Ant_kWh
Mes Actual (Reloj PLC)	Mes_Actual	28 – Consumo_Año_Ant_kWh 29 – Consumo_Dia_Act_kWh
→ Día Actual (Reloj PLC) →	Dia_Actual	30 – Consumo_Mes_Act_kWh 31 – Consumo_Año_Act_kWh 32 – Consumo_Cuarto_N_kWh 33 – Consumo_Cuarto_1N_kWh 34 – Consumo_Cuarto_2N_kWh 35 – Consumo_Cuarto_3N_kWh
L		

La Potencia Nominal (kW) será un valor fijo en el caso de los rectificadores y un campo variable si se corresponde con el valor de la acometida, ya que es un valor que en algunos casos puede modificarse en el tiempo. Así pues será un campo parametrizable desde el SCADA.

Se direccionarán a campos en diferentes pantallas del SCADA las siguientes variables:

- 08 Pot_Max_Dia_Act_%
- 09 Hora_Pot_Max_Dia_Act
- 10 Min_Pot_Max_Dia_Act
- 11 Seg_Pot_Max_Dai_Act
- 12 Pot_Max_Mes_Act_%
- 13 Dia_Pot_Max_Mes_Act
- 14 Mes_Pot_Max_Mes_Act
- 15 Año_Pot_Max_Mes_Act
- 16 Hora_Pot_Max_Mes_Act
- 17 Min_Pot_Max_Mes_Act
- 18 Seg_Pot_Max_Mes_Act
- 19 Pot_Max_Año_Act_%
- 20 Dia_Pot_Max_Año_Act
- 21 Mes_Pot_Max_Año_Act
- 22 Año_Pot_Max_Año_Act
- 23 Hora_Pot_Max_Año_Act
- 24 Min_Pot_Max_Año_Act
- 25 Seg_Pot_Max_Año_Act
- 26 Consumo_Dia_Ant_kWh
- 27 Consumo_Mes_ANT_kWh
- 28 Consumo_Año_ANT_kWh
- 29 Consumo_Dia_ACT_kWh
- 30 Consumo_Mes_ACT_kWh
- 31 Consumo_Año_ACT_kWh
- 32 Consumo_Cuarto_N_kWh
- 32 Consumo_Cuarto_1N_KWh
- 34 Consumo_Cuarto_2N_KWh
- 35 Consumo_Cuarto_3N_KWh

Las demás variables quedarán a disposición de que se desee leerlas desde el SCADA.

4. SUBRUTINA DEL CÁLCULO DE LOS CONSUMOS EN CORRIENTE ALTERNA

WORD

VARIABLES DE ENTRADA

Permiso_Calculos	BIT	Permiso Calcular Condiciones OK (Comunic, PLC, Etc)
Inicio_Prog_Dia	BIT	Forzar Inicio Programa Consumo Diario
Inicio_Prog_Mes	BIT	Forzar Inicio Programa Consumo Mensual
Inicio_Prog_Año	BIT	Forzar Inicio Programa Consumo Anual
U_PMXXX_V	DOBLE WORD	Valor Actual de Tensión desde el Analizador de Red
I_PMXXX_A	DOBLE WORD	Valor Actual de Intensidad desde el Analizador de Red
CosPHI_PMXXX	DOBLE WORD	Valor Actual del Coseno de Phi desde el Analizador de Red
Pot Nom kW	WORD	Potencia Nominal en kW
FOL_NOTII_KW	WORD	i otericia ivorninai eri kw
Tiempo_Ciclo_ms	WORD	Tiempo de Ciclo del Autómata
Tiempo_Ciclo_ms	WORD	Tiempo de Ciclo del Autómata
Tiempo_Ciclo_ms Hora_Actual	WORD WORD	Tiempo de Ciclo del Autómata Hora Actual desde el Reloj del Autómata
Tiempo_Ciclo_ms Hora_Actual Minuto_Actual	WORD WORD WORD	Tiempo de Ciclo del Autómata Hora Actual desde el Reloj del Autómata Minuto Actual desde el Reloj del Autómata

Día Actual desde el Reloj del Autómata

VARIABLES DE SALIDA

Dia_Actual

Pot_Inst_kW	DOBLE WORD	Potencia Instantanea Medida (kW)
Pot_Inst_%	DOBLE WORD	Potencia Instantanea Medida (%) sobre Potencia Nominal
Pot_Med_Dia_Ant_kW	DOBLE WORD	Potencia Media Memorizada Dia Anterior (kW)
Pot_Med_Mes_Ant_kW	DOBLE WORD	Potencia Media Memorizada Mes Anterior (kW)
Pot_Med_Año_Ant_kW	DOBLE WORD	Potencia Media Memorizada Año Anterior (kW)
Pot_Med_Dia_Act_kW	DOBLE WORD	Potencia Media Dia Actual (kW)
Pot_Med_Mes_Act_kW	DOBLE WORD	Potencia Media Mes Actual (kW)
Pot_Med_Año_Ant_kW	DOBLE WORD	Potencia Media Año Actual (kW)
Pot_Max_Dia_Act_%	DOBLE WORD	Potencia Maxima Actual Día (%) sobre Potencia Nominal
Hora_Pot_Max_Dia_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Día (%)
Min_Pot_Max_Dia_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Día (%)
Seg_Pot_Max_Dia_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Día (%)
Pot_Max_Mes_Act_%	DOBLE WORD	Potencia Maxima Actual Mes (%) sobre Potencia Nominal
Dia_Pot_Max_Mes_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Mes (%)

Mes_Pot_Max_Mes_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Mes (%)
Año_Pot_Max_Mes_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Mes (%)
Hora_Pot_Max_Mes_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Mes (%)
Min_Pot_Max_Mes_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Mes (%)
Seg_Pot_Max_Mes_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Mes (%)
Pot_Max_Año_Act_%	DOBLE WORD	Potencia Maxima Actual Año (%) sobre Potencia Nominal
Dia_Pot_Max_Año_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Año (%)
Mes_Pot_Max_Año_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Año (%)
Año_Pot_Max_Año_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Año (%)
Hora_Pot_Max_Año_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Año (%)
Min_Pot_Max_Año_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Año (%)
Seg_Pot_Max_Año_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Año (%)
Consumo_Dia_kWh_Ant	DOBLE WORD	Consumo Memorizado Dia Anterior (kWh)
Consumo_Mes_kWh_Ant	DOBLE WORD	Consumo Memorizado Mes Anterior (kWh)
Consumo_Año_kWh_Ant	DOBLE WORD	Consumo Memorizado Año Anterior (kWh)
Consumo_Dia_kWh_Act	DOBLE WORD	Consumo Memorizado Dia Actual (kWh)
Consumo_Mes_kWh_Act	DOBLE WORD	Consumo Memorizado Mes Actual (kWh)
Consumo_Año_kWh_Act	DOBLE WORD	Consumo Memorizado Año Actual (kWh)
Consumo_Cuarto_N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual (kWh)
Consumo_Cuarto_1N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual - 1 (kWh)
Consumo_Cuarto_2N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual - 2 (kWh)
Consumo_Cuarto_3N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual - 3 (kWh)

VARIABLES AUXILIARES

Permiso_Calculos	BIT	Permiso para Calcular
Num_Ciclos_Dia_Ant	DOBLE WORD	Número de Ciclos Contados Dia Anterior
Num_Ciclos_Dia_Act	DOBLE WORD	Número de Ciclos Contados Dia Actual
Num_Ciclos_Mes_Ant	DOBLE WORD	Número de Ciclos Contados Mes Anterior
Num_Ciclos_Mes_Act	DOBLE WORD	Número de Ciclos Contados Mes Actual
Num_Ciclos_Año_Ant	DOBLE WORD	Número de Ciclos Contados Año Anterior
Num_Ciclos_Año_Act	DOBLE WORD	Número de Ciclos Contados Año Actual
Num_Ciclos_Cuarto	DOBLE WORD	Número de Ciclos Contados Cuarto Hora Actual
Aux_Med_Dia_Act_kW	DOBLE WORD	Variable Auxiliar Media Diaria Actual
Aux_Med_Mes_Act_kW	DOBLE WORD	Variable Auxiliar Media Mensual Actual
Aux_Med_Año_Act_kW	DOBLE WORD	Variable Auxiliar Media Anual Actual
Aux_Med_Cuarto_N_kW	DOBLE WORD	Variable Auxiliar Media Cuart Hora Actual


```
PROGRAMA
ΙF
                            Permiso_Calculos
       THEN
                            Pot_Inst_kW =
                            1,7320
                                                              (RAIZ CUADRADA DE TRES)
                            \mathsf{U}_{-}\mathsf{PMXXX}_{-}\mathsf{V}
                            I\_PMXXX\_A
                            CosPHI_PMXXX
                            1000;
                            Pot_Inst_% =
                            Pot_Inst_kW / Pot_Nom_kW ) *100;
IF
                            PULSO
                            Min\_Actual = 00
       (
              AND
                            Seg_Actual = 00)
OR
                            PULSO
                            Min\_Actual = 15
       (
              AND
                            Seg_Actual = 00)
OR
                            PULSO
                            Min\_Actual = 30
       (
              AND
                            Seg\_Actual = 00)
OR
                            PULSO
                            Min\_Actual = 45
       (
                            Seg_Actual = 00)
              AND
       THEN
                            Num_Ciclos_Cuarto = 0;
                            Aux\_Med\_Cuarto\_N\_kW = 0;
                            Consumo_Cuarto_3N_kWh =
                            Consumo_Cuarto_2N_kWh;
```



```
Consumo_Cuarto_2N_kWh =
                              Consumo_Cuarto_1N_kWh;
                              Consumo_Cuarto_1N_kWh =
                              Consumo_Cuarto_N_kWh;
                              Consumo_Cuarto_N_kWh = 0;
       ELSE
ENDIF
IF
                              PULSO
                              Hora Actual = 00
       (
                              Min\_Actual = 00
               AND
                              Seg\_Actual = 00)
               AND
OR
                              PULSO
       (
                              Inicio_Prog_Dia )
       THEN
                              Num_Ciclos_Dia_Ant =
                              Num_Ciclos_Dia_Act;
                              Pot_Med_Dia_Ant_kWh =
                              Pot_Med_Dia_Act_kWh;
                              Consumo_Dia_Ant_kWh =
                              Consumo_Dia_Act_kWh;
                              Num_Ciclos_Dia_Act = 0;
                              Aux\_Med\_Dia\_Act\_kW = 0;
                              Pot_Med_Dia_Act_kW = 0;
                              Pot_Max_Dia_Act_% = 0;
                              Hora_Pot_Max_Dia_Act = 0;
                              Min_Pot_Max_Dia_Act = 0;
                              Seg_Pot_Max_Dia_Act
                                                    = 0;
                              Consumo_Dia_Act_kWh = 0;
       ELSE
ENDIF
```



```
IF
                               PULSO
                               Dia\_Actual = 01
       (
               AND
                               Hora\_Actual = 00
               AND
                               Min\_Actual = 00
               {\sf AND}
                               Seg_Actual = 00)
                               PULSO
OR
       (
                               Inicio_Prog_Mes )
       THEN
                               Num_Ciclos_Mes_Ant =
                               Num_Ciclos_Mes_Act;
                               Pot_Med_Mes_Ant_kWh =
                               Pot_Med_Mes_Act_kWh;
                               Consumo_Mes_Ant_kWh =
                               Consumo_Mes_Act_kWh;
                               Num_Ciclos_Mes_Act = 0;
                               Aux\_Med\_Mes\_Act\_kW = 0;
                               Pot_Med_Mes_Act_kW = 0;
                               Pot_Max_Mes_Act_% = 0;
                               Dia_Pot_Max_Mes_Act = 0;
                               Mes_Pot_Max_Mes_Act = 0;
                               A\tilde{n}o_Pot_Max_Mes_Act = 0;
                               Hora_Pot_Max_Mes_Act = 0;
                               Min_Pot_Max_Mes_Act
                                                     = 0;
                               Seg_Pot_Max_Mes_Act
                               Consumo\_Mes\_Act\_kWh = 0;
       ELSE
ENDIF
ΙF
                               PULSO
                               Mes_Actual = 01
       (
               AND
                               Dia\_Actual = 01
                               Hora\_Actual = 00
               AND
               AND
                               Min\_Actual = 00
               AND
                               Seg_Actual = 00)
```



```
PULSO
OR
                              Inicio_Prog_Año )
       (
       THEN
                              Num_Ciclos_Año_Ant =
                              Num_Ciclos_Año_Act;
                              Pot_Med_Año_Ant_kWh =
                              Pot_Med_Año_Act_kWh;
                              Consumo_Año_Ant_kWh =
                              Consumo_Año_Act_kWh;
                              Num_Ciclos_Año_Act = 0;
                              Aux\_Med\_Año\_Act\_kW = 0;
                              Pot_Med_Año_Act_kW = 0;
                              Pot_Max_Año_Act_% = 0;
                              Dia_Pot_Max_Año_Act = 0;
                              Mes_Pot_Max_A\tilde{n}o_Act = 0;
                              Año_Pot_Max_Año_Act = 0;
                              Hora_Pot_Max_Año_Act = 0;
                              Min_Pot_Max_Año_Act = 0;
                              Seg_Pot_Max_A\tilde{n}o_Act = 0;
                              Consumo_Año_Act_kWh = 0;
       ELSE
ENDIF
/****** NUMERO DE CICLOS DE PROGRAMA POR UNIDAD DE TIEMPO *********/
( Un cuarto de hora consta de (1000/Tiempo_Ciclo_ms)* 3600 / 4
                                                                                          )
                              Num_Ciclos_Cuarto =
                              Num_Ciclos_Cuarto + 1;
( Un día consta de (1000/Tiempo_Ciclo_ms)* 3600 * 24
                                                                                           )
                              Num_Ciclos_Dia_Act =
                              Num_Ciclos_Dia_Act + 1;
```

Página 14 de 28


```
( Un mes consta de (1000/Tiempo_Ciclo_ms)* 3600 * 24 * Numero días en el mes
                                                                             )
                          Num_Ciclos_Mes_Act =
                          Num_Ciclos_Mes_Act + 1;
( Un año consta de (1000/Tiempo_Ciclo_ms)* 3600 * 24 * Numero días en el año
                                                                             )
                          Num_Ciclos_Año_Act =
                          Num_Ciclos_Año_Act + 1;
/***********************************/
                         Aux_Med_Cuarto_N_kW =
                          Aux_Med_Cuarto_N_kW + Pot_Inst_kW;
                          Aux_Med_Dia_Act_kW =
                          Aux_Med_Dia_Act_kW + Pot_Inst_kW;
                          Pot_Med_Dia_Act_kW =
                          Aux_Med_Dia_Act_kW / Num_Ciclos_Dia_Act;
                          Aux\_Med\_Mes\_Act\_kW =
                          Aux_Med_Mes_Act_kW + Pot_Inst_kW;
                          Pot_Med_Mes_Act_kW =
                          Aux_Med_Mes_Act_kW / Num_Ciclos_Mes_Act;
                          Aux_Med_Año_Act_kW =
                          Aux_Med_Año_Act_kW + Pot_Inst_kW;
                          Pot_Med_Año_Act_kW =
                          Aux_Med_Año_Act_kW / Num_Ciclos_Año_Act;
ΙF
                          Pot_Inst_% >
                          Pot_Max_Dia_Act_%
```

Página 15 de 28


```
THEN
                       Pot_Max_Dia_Act_% =
                       Pot_Inst_%;
                       Hora_Pot_Max_Dia_Act = Hora_Actual;
                       Min_Pot_Max_Dia_Act = Min_Actual;
                       Seg_Pot_Max_Dia_Act = Seg_Actual;
ΙF
                       Pot_Inst_% >
                       Pot_Max_Mes_Act_%
       THEN
                       Pot_Max_Mes_Act_% =
                       Pot_Inst_%;
                       Año_Pot_Max_Mes_Act = Año_Actual;
                       Mes_Pot_Max_Mes_Act = Mes_Actual;
                       Dia_Pot_Max_Mes_Act = Dia_Actual;
                       Hora_Pot_Max_Mes_Act = Hora_Actual;
                       Min_Pot_Max_Mes_Act = Min_Actual;
                       Seg_Pot_Max_Mes_Act = Seg_Actual;
       ΙF
                       Pot_Inst_% >
                       Pot_Max_Año_Act_%
               THEN
                       Pot_Max_Año_Act_% =
                       Pot_Inst_%;
                       Año_Pot_Max_Año_Act = Año_Actual;
                       Mes_Pot_Max_Año_Act = Mes_Actual;
                       Dia_Pot_Max_Año_Act = Dia_Actual;
                       Hora_Pot_Max_Año_Act = Hora_Actual;
                       Min_Pot_Max_Año_Act = Min_Actual;
                       Seg_Pot_Max_Año_Act = Seg_Actual;
               ELSE
```

ENDIF

Página 16 de 28


```
ELSE
      ENDIF
      ELSE
ENDIF
Consumo_Cuarto_N_kWh =
                  (
                         Aux_Med_Cuarto_N_kW * Tiempo_Ciclo_ms * Num_Ciclos_Cuarto )
                  (
                         1000 * 3600 );
                         Consumo_Dia_Act_kWh =
                         Aux_Med_Dia_Act_kW * Tiempo_Ciclo_ms * Num_Ciclos_Dia_Act )
                  (
                  (
                         1000 * 3600 );
                         Consumo_Mes_Act_kWh =
                         Aux_Med_Mes_Act_kW * Tiempo_Ciclo_ms * Num_Ciclos_Mes_Act )
                  (
                         1000 * 3600 );
                         Consumo_Año_Act_kWh =
                         Aux_Med_Año_Act_kW * Tiempo_Ciclo_ms * Num_Ciclos_Año_Act )
                  (
                  (
                         1000 * 3600 );
      ELSE
ENDIF
END (PROGRAMA)
```


SUBRUTINA DEL CÁLCULO DE LOS CONSUMOS EN CORRIENTE CONTINUA 5.

WORD

WORD

VARIABLES DE ENTRADA

Permiso_Calculos	BIT	Permiso Calcular Condiciones OK (Comunic, PLC, Etc)
Inicio_Prog_Dia	BIT	Forzar Inicio Programa Consumo Diario
Inicio_Prog_Mes	BIT	Forzar Inicio Programa Consumo Mensual
Inicio_Prog_Año	BIT	Forzar Inicio Programa Consumo Anual
U_V	DOBLE WORD	Valor Actual de Tensión desde el Analizador de Red
I_A	DOBLE WORD	Valor Actual de Intensidad desde el Analizador de Red
Pot_Nom_kW	WORD	Potencia Nominal en kW
Tiempo_Ciclo_ms	WORD	Tiempo de Ciclo del Autómata
Hora_Actual	WORD	Hora Actual desde el Reloj del Autómata
Minuto_Actual	WORD	Minuto Actual desde el Reloj del Autómata
Segundo_Actual	WORD	Segundo Actual desde el Reloj del Autómata
Año_Actual	WORD	Año Actual desde el Reloj del Autómata

Mes Actual desde el Reloj del Autómata

Día Actual desde el Reloj del Autómata

VARIABLES DE SALIDA

Mes_Actual

Dia_Actual

Pot_Inst_kW	DOBLE WORD	Potencia Instantanea Medida (kW)
Pot_Inst_%	DOBLE WORD	Potencia Instantanea Medida (%) sobre Potencia Nominal
Pot_Med_Dia_Ant_kW	DOBLE WORD	Potencia Media Memorizada Dia Anterior (kW)
Pot_Med_Mes_Ant_kW	DOBLE WORD	Potencia Media Memorizada Mes Anterior (kW)
Pot_Med_Año_Ant_kW	DOBLE WORD	Potencia Media Memorizada Año Anterior (kW)
Pot_Med_Dia_Act_kW	DOBLE WORD	Potencia Media Dia Actual (kW)
Pot_Med_Mes_Act_kW	DOBLE WORD	Potencia Media Mes Actual (kW)
Pot_Med_Año_Ant_kW	DOBLE WORD	Potencia Media Año Actual (kW)
Pot_Max_Dia_Act_%	DOBLE WORD	Potencia Maxima Actual Día (%) sobre Potencia Nominal
Hora_Pot_Max_Dia_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Día (%)
Min_Pot_Max_Dia_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Día (%)
Seg_Pot_Max_Dia_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Día (%)
Pot_Max_Mes_Act_%	DOBLE WORD	Potencia Maxima Actual Mes (%) sobre Potencia Nominal
Dia_Pot_Max_Mes_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Mes (%)
Mes_Pot_Max_Mes_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Mes (%)

Año_Pot_Max_Mes_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Mes (%)
Hora_Pot_Max_Mes_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Mes (%)
Min_Pot_Max_Mes_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Mes (%)
Seg_Pot_Max_Mes_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Mes (%)
Pot_Max_Año_Act_%	DOBLE WORD	Potencia Maxima Actual Año (%) sobre Potencia Nominal
Dia_Pot_Max_Año_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Año (%)
Mes_Pot_Max_Año_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Año (%)
Año_Pot_Max_Año_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Año (%)
Hora_Pot_Max_Año_Act	DOBLE WORD	Hora Memorizada Potencia Maxima Actual Año (%)
Min_Pot_Max_Año_Act	DOBLE WORD	Minuto Memorizado Potencia Maxima Actual Año (%)
Seg_Pot_Max_Año_Act	DOBLE WORD	Segundo Memorizado Potencia Maxima Actual Año (%)
Consumo_Dia_kWh_Ant	DOBLE WORD	Consumo Memorizado Dia Anterior (kWh)
Consumo_Mes_kWh_Ant	DOBLE WORD	Consumo Memorizado Mes Anterior (kWh)
Consumo_Año_kWh_Ant	DOBLE WORD	Consumo Memorizado Año Anterior (kWh)
Consumo_Dia_kWh_Act	DOBLE WORD	Consumo Memorizado Dia Actual (kWh)
Consumo_Mes_kWh_Act	DOBLE WORD	Consumo Memorizado Mes Actual (kWh)
Consumo_Año_kWh_Act	DOBLE WORD	Consumo Memorizado Año Actual (kWh)
Consumo_Cuarto_N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual (kWh)
Consumo_Cuarto_1N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual - 1 (kWh)
Consumo_Cuarto_2N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual - 2 (kWh)
Consumo_Cuarto_3N_kWh	DOBLE WORD	Consumo Memorizado Cuarto Hora Actual - 3 (kWh)

VARIABLES AUXILIARES

Permiso_Calculos	BIT	Permiso para Calcular
Num_Ciclos_Dia_Ant	DOBLE WORD	Número de Ciclos Contados Dia Anterior
Num_Ciclos_Dia_Act	DOBLE WORD	Número de Ciclos Contados Dia Actual
Num_Ciclos_Mes_Ant	DOBLE WORD	Número de Ciclos Contados Mes Anterior
Num_Ciclos_Mes_Act	DOBLE WORD	Número de Ciclos Contados Mes Actual
Num_Ciclos_Año_Ant	DOBLE WORD	Número de Ciclos Contados Año Anterior
Num_Ciclos_Año_Act	DOBLE WORD	Número de Ciclos Contados Año Actual
Num_Ciclos_Cuarto	DOBLE WORD	Número de Ciclos Contados Cuarto Hora Actual
Aux_Med_Dia_Act_kW	DOBLE WORD	Variable Auxiliar Media Diaria Actual
Aux_Med_Mes_Act_kW	DOBLE WORD	Variable Auxiliar Media Mensual Actual
Aux_Med_Año_Act_kW	DOBLE WORD	Variable Auxiliar Media Anual Actual
Aux_Med_Cuarto_N_kW	DOBLE WORD	Variable Auxiliar Media Cuart Hora Actual

PROGRAMA

```
IF
                          Permiso_Calculos
      THEN
                          Pot_Inst_kW =
                          U_V
                          I_A
                          1000;
                          Pot_Inst_% =
                   (
                          Pot_Inst_kW / Pot_Nom_kW ) *100;
ΙF
                          PULSO
                          Min\_Actual = 00
      (
             AND
                          Seg\_Actual = 00)
OR
                          PULSO
                          Min\_Actual = 15
      (
                          Seg_Actual = 00 )
             AND
OR
                          PULSO
                          Min\_Actual = 30
      (
             AND
                          Seg\_Actual = 00)
OR
                          PULSO
                          Min\_Actual = 45
      (
             AND
                          Seg\_Actual = 00)
      THEN
                          Num_Ciclos_Cuarto = 0;
                          Aux\_Med\_Cuarto\_N\_kW = 0;
                          Consumo_Cuarto_3N_kWh =
                          Consumo_Cuarto_2N_kWh;
                          Consumo_Cuarto_2N_kWh =
```

Consumo_Cuarto_1N_kWh;


```
Consumo_Cuarto_1N_kWh =
                              Consumo_Cuarto_N_kWh;
                              Consumo\_Cuarto\_N\_kWh = 0;
       ELSE
ENDIF
ΙF
                              PULSO
                              Hora_Actual = 00
       (
               AND
                              Min\_Actual = 00
               AND
                              Seg_Actual = 00)
OR
                              PULSO
       (
                              Inicio_Prog_Dia )
       THEN
                              Num_Ciclos_Dia_Ant =
                              Num_Ciclos_Dia_Act;
                              Pot_Med_Dia_Ant_kWh =
                              Pot_Med_Dia_Act_kWh;
                              Consumo_Dia_Ant_kWh =
                              Consumo_Dia_Act_kWh;
                              Num_Ciclos_Dia_Act = 0;
                              Aux_Med_Dia_Act_kW = 0;
                              Pot_Med_Dia_Act_kW = 0;
                              Pot_Max_Dia_Act_% = 0;
                              Hora_Pot_Max_Dia_Act = 0;
                              Min_Pot_Max_Dia_Act
                              Seg_Pot_Max_Dia_Act
                                                     = 0;
                              Consumo_Dia_Act_kWh = 0;
       ELSE
ENDIF
ΙF
                              PULSO
       (
                              Dia_Actual = 01
               AND
                              Hora\_Actual = 00
```



```
AND
                              Min\_Actual = 00
               AND
                              Seg\_Actual = 00)
OR
                              PULSO
       (
                              Inicio_Prog_Mes )
       THEN
                              Num_Ciclos_Mes_Ant =
                              Num_Ciclos_Mes_Act;
                              Pot_Med_Mes_Ant_kWh =
                              Pot_Med_Mes_Act_kWh;
                              Consumo_Mes_Ant_kWh =
                              Consumo_Mes_Act_kWh;
                              Num_Ciclos_Mes_Act = 0;
                              Aux\_Med\_Mes\_Act\_kW = 0;
                              Pot_Med_Mes_Act_kW = 0;
                              Pot_Max_Mes_Act_% = 0;
                              Dia_Pot_Max_Mes_Act = 0;
                              Mes_Pot_Max_Mes_Act = 0;
                              A\tilde{n}o_Pot_Max_Mes_Act = 0;
                              Hora_Pot_Max_Mes_Act = 0;
                              Min_Pot_Max_Mes_Act = 0;
                              Seg_Pot_Max_Mes_Act = 0;
                              Consumo_Mes_Act_kWh = 0;
       ELSE
ENDIF
IF
                              PULSO
                              Mes_Actual = 01
       (
               AND
                              Dia\_Actual = 01
               AND
                              Hora_Actual = 00
                              Min\_Actual = 00
               AND
               AND
                              Seg\_Actual = 00)
OR
                              PULSO
       (
                              Inicio_Prog_Año )
       THEN
```



```
Num_Ciclos_Año_Ant =
                                Num_Ciclos_Año_Act;
                                Pot_Med_Año_Ant_kWh =
                                Pot_Med_Año_Act_kWh;
                                Consumo_Año_Ant_kWh =
                                Consumo_Año_Act_kWh;
                                Num_Ciclos_Año_Act = 0;
                                Aux\_Med\_A\tilde{n}o\_Act\_kW = 0;
                                Pot Med Año Act kW = 0;
                                Pot_Max_Año_Act_% = 0;
                                Dia_Pot_Max_A\tilde{n}o_Act = 0;
                                Mes_Pot_Max_A\tilde{n}o_Act = 0;
                                A\tilde{n}o_Pot_Max_A\tilde{n}o_Act = 0;
                                Hora_Pot_Max_Año_Act = 0;
                                Min_Pot_Max_A\tilde{n}o_Act = 0;
                                Seg_Pot_Max_A\tilde{n}o_Act = 0;
                                Consumo_Año_Act_kWh = 0;
        ELSE
ENDIF
/****** NUMERO DE CICLOS DE PROGRAMA POR UNIDAD DE TIEMPO **********/
( Un cuarto de hora consta de (1000/Tiempo_Ciclo_ms)* 3600 / 4
                                                                                                  )
                                Num_Ciclos_Cuarto =
                                Num_Ciclos_Cuarto + 1;
( Un día consta de (1000/Tiempo_Ciclo_ms)* 3600 * 24
                                                                                                  )
                                Num_Ciclos_Dia_Act =
                                Num_Ciclos_Dia_Act + 1;
( Un mes consta de (1000/Tiempo_Ciclo_ms)* 3600 * 24 * Numero días en el mes
                                                                                                )
```

Página 23 de 28


```
Num_Ciclos_Mes_Act =
                         Num_Ciclos_Mes_Act + 1;
( Un año consta de (1000/Tiempo_Ciclo_ms)* 3600 * 24 * Numero días en el año
                                                                           )
                        Num_Ciclos_Año_Act =
                        Num_Ciclos_Año_Act + 1;
Aux_Med_Cuarto_N_kW =
                        Aux_Med_Cuarto_N_kW + Pot_Inst_kW;
                        Aux_Med_Dia_Act_kW =
                        Aux_Med_Dia_Act_kW + Pot_Inst_kW;
                        Pot_Med_Dia_Act_kW =
                        Aux_Med_Dia_Act_kW / Num_Ciclos_Dia_Act;
                        Aux_Med_Mes_Act_kW =
                        Aux_Med_Mes_Act_kW + Pot_Inst_kW;
                        Pot_Med_Mes_Act_kW =
                        Aux_Med_Mes_Act_kW / Num_Ciclos_Mes_Act;
                        Aux_Med_Año_Act_kW =
                        Aux_Med_Año_Act_kW + Pot_Inst_kW;
                        Pot_Med_Año_Act_kW =
                        Aux_Med_Año_Act_kW / Num_Ciclos_Año_Act;
/************************************/
IF
                        Pot_Inst_% >
                        Pot_Max_Dia_Act_%
      THEN
                        Pot_Max_Dia_Act_% =
```

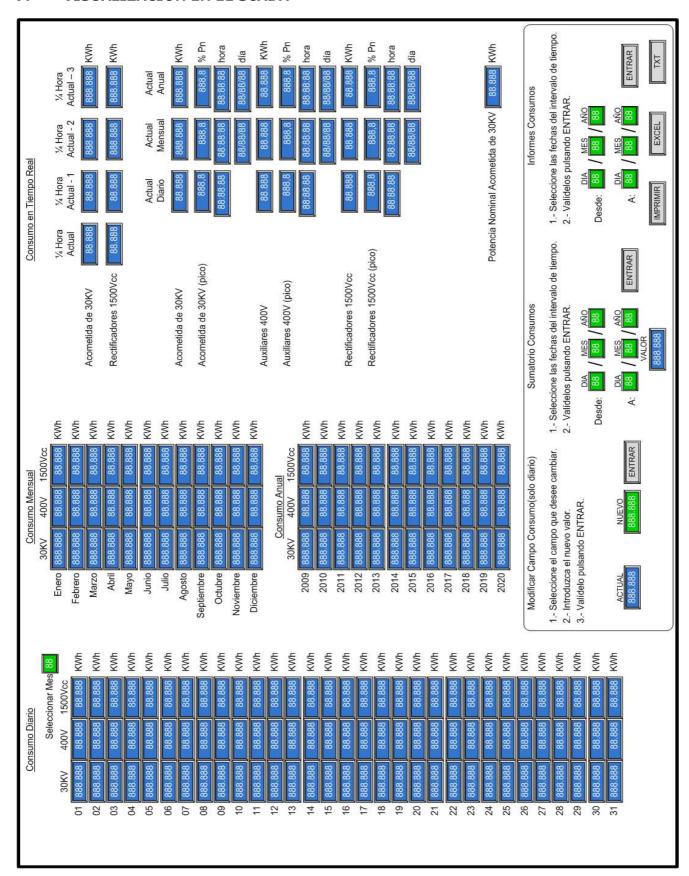
Página 24 de 28


```
Pot_Inst_%;
                       Hora_Pot_Max_Dia_Act = Hora_Actual;
                       Min_Pot_Max_Dia_Act = Min_Actual;
                       Seg_Pot_Max_Dia_Act = Seg_Actual;
IF
                       Pot_Inst_% >
                       Pot_Max_Mes_Act_%
       THEN
                       Pot_Max_Mes_Act_% =
                       Pot_Inst_%;
                       Año_Pot_Max_Mes_Act = Año_Actual;
                       Mes_Pot_Max_Mes_Act = Mes_Actual;
                       Dia_Pot_Max_Mes_Act = Dia_Actual;
                       Hora_Pot_Max_Mes_Act = Hora_Actual;
                       Min_Pot_Max_Mes_Act = Min_Actual;
                       Seg_Pot_Max_Mes_Act = Seg_Actual;
       IF
                       Pot_Inst_% >
                       Pot_Max_Año_Act_%
               THEN
                       Pot_Max_Año_Act_% =
                       Pot_Inst_%;
                       Año_Pot_Max_Año_Act = Año_Actual;
                       Mes_Pot_Max_Año_Act = Mes_Actual;
                       Dia_Pot_Max_Año_Act = Dia_Actual;
                       Hora_Pot_Max_Año_Act = Hora_Actual;
                       Min_Pot_Max_Año_Act = Min_Actual;
                       Seg_Pot_Max_Año_Act = Seg_Actual;
               ELSE
       ENDIF
       ELSE
```



```
ENDIF
      ELSE
ENDIF
Consumo_Cuarto_N_kWh =
                         Aux_Med_Cuarto_N_kW * Tiempo_Ciclo_ms * Num_Ciclos_Cuarto )
                   (
                   (
                         1000 * 3600 );
                         Consumo_Dia_Act_kWh =
                   (
                         Aux\_Med\_Dia\_Act\_kW * Tiempo\_Ciclo\_ms * Num\_Ciclos\_Dia\_Act \ )
                   (
                         1000 * 3600 );
                         Consumo_Mes_Act_kWh =
                   (
                         Aux_Med_Mes_Act_kW * Tiempo_Ciclo_ms * Num_Ciclos_Mes_Act )
                   (
                         1000 * 3600 );
                         Consumo_Año_Act_kWh =
                         Aux_Med_Año_Act_kW * Tiempo_Ciclo_ms * Num_Ciclos_Año_Act )
                   (
                         1000 * 3600 );
                   (
      ELSE
ENDIF
END (PROGRAMA)
```

Página 26 de 28


6. ALMACENAMIENTO Y GESTIÓN EN EL SCADA

La gestión de los datos consistirá en:

- Visualización en tiempo real de los valores de los contadores totales.
- Visualización de los valores parciales en modo histórico, de manera que podamos ver gráficamente su evolución a lo largo de un periodo determinado de tiempo, o incluso comparar valores de consumo de diferentes subestaciones, o de diferentes periodos de tiempo (en gráficas independientes), pudiéndose obtener además los valores máximos, medios, y mínimos en ese periodo de tiempo. Estos datos además se podrán exportar en formato .csv o .txt, en caso de ser necesario su tratamiento por otras aplicaciones.
- La visualización de los valores de los contadores totales se mostrará en forma de tabla.

7. VISUALIZACIÓN EN EL SCADA

