APÉNDICE Nº 10.4 NOTA DE CÁLCULO MARQUESINA

ÍNDICE

1 DATOS DE OBRA	2
1.1 Normas consideradas	2
1.2 Estados límite	2
1.2.1 Situaciones de proyecto	2
2 ESTRUCTURA	3
2.1 Geometría	3
2.1.1 Nudos	3
2.1.2 Barras	4
2.2 Cargas	7
2.2.1 Barras	7
2.3 Resultados	12
2.3.1 Nudos	12
2.3.2 Barras	46

marquesina Fecha: 02/03/21

1.- DATOS DE OBRA

1.1.- Normas consideradas

Aceros laminados y armados: CTE DB SE-A

1.2.- Estados límite

E.L.U. de rotura. Acero laminado	CTE
	Cota de nieve: Altitud inferior o igual a 1000 m
Desplazamientos	Acciones características

1.2.1.- Situaciones de proyecto

Para las distintas situaciones de proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:

- Con coeficientes de combinación
- Sin coeficientes de combinación
- Donde:
- G_k Acción permanente
- P_k Acción de pretensado
- Q_k Acción variable
- γ_{G} Coeficiente parcial de seguridad de las acciones permanentes
- γ_P Coeficiente parcial de seguridad de la acción de pretensado
- $\gamma_{Q,1}$ Coeficiente parcial de seguridad de la acción variable principal
- $\gamma_{Q,i}$ Coeficiente parcial de seguridad de las acciones variables de acompañamiento
- $\psi_{p,1}$ Coeficiente de combinación de la acción variable principal
- $\psi_{a,i}$ Coeficiente de combinación de las acciones variables de acompañamiento

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

E.L.U. de rotura. Acero laminado: CTE DB SE-A

	Persistente o transitoria												
	Coeficientes parciales de seguridad (γ) Coeficientes de combinación (
	Favorable Desfavorable Principal (ψ _p) Acompañamiento												
Carga permanente (G)	0.800	1.350	-	-									
Viento (Q)	0.000	1.500	1.000	0.600									
Nieve (Q)	0.000	1.500	1.000	0.500									

Desplazamientos

Característica
Coeficientes parciales de seguridad (γ)

rquesina Fecha: 02/03/21

	Favorable	Desfavorable
Carga permanente (G)	1.000	1.000
Viento (Q)	0.000	1.000
Nieve (Q)	0.000	1.000

2.- ESTRUCTURA

2.1.- Geometría

2.1.1.- Nudos

Referencias:

 $\Delta_{\text{x}\text{,}}$ $\Delta_{\text{y}\text{,}}$ $\Delta_{\text{z}}\text{:}$ Desplazamientos prescritos en ejes globales.

 $\theta_{\text{x}},\,\theta_{\text{y}},\,\theta_{\text{z}} .$ Giros prescritos en ejes globales.

Cada grado de libertad se marca con 'X' si está coaccionado y, en caso contrario, con '-'.

Nudos												
	Coo	rdenac	las	Vin	cula	ció	n ex	xte	ior			
Referencia	X (m)	Y (m)	Z (m)	Δ_{x}	Δ_{y}	Δ_{z}	θ_{x}	θ_{y}	θ_{z}	Vinculación interior		
N1	0.000	0.000	3.300	-	-	-	-	-	-	Empotrado		
N2	0.000	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N3	0.000	2.800	3.000	-	-	-	-	-	-	Empotrado		
N4	2.500	0.000	3.300	-	-	-	-	-	-	Empotrado		
N5	2.500	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N6	2.500	2.800	3.000	-	-	-	-	-	-	Empotrado		
N7	5.000	0.000	3.300	-	-	-	-	-	-	Empotrado		
N8	5.000	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N9	5.000	2.800	3.000	-	-	-	-	-	-	Empotrado		
N10	7.500	0.000	3.300	-	-	-	-	-	-	Empotrado		
N11	7.500	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N12	7.500	2.800	3.000	-	-	-	-	-	-	Empotrado		
N13	10.000	0.000	3.300	-	-	-	-	-	-	Empotrado		
N14	10.000	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N15	10.000	2.800	3.000	-	-	-	-	-	-	Empotrado		
N16	12.500	0.000	3.300	-	-	-	-	-	-	Empotrado		
N17	12.500	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N18	12.500	2.800	3.000	-	-	-	-	-	-	Empotrado		
N19	15.000	0.000	3.300	-	-	-	-	-	-	Empotrado		
N20	15.000	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N21	15.000	2.800	3.000	-	-	-	-	-	-	Empotrado		
N22	17.500	0.000	3.300	-	-	-	-	-	-	Empotrado		
N23	17.500	2.800	0.000	Χ	Χ	Χ	Χ	Х	Х	Empotrado		
N24	17.500	2.800	3.000	-	-	-	-	-	-	Empotrado		
N25	20.000	0.000	3.300	-	-	-	-	-	-	Empotrado		
N26	20.000	2.800	0.000	Х	Χ	Χ	Χ	Χ	Χ	Empotrado		
N27	20.000	2.800	3.000	-	-	-	-	-	-	Empotrado		

Fecha: 02/03/21

2.1.2.- Barras

2.1.2.1.- Materiales utilizados

Materiales utilizados												
Mater	ial	Е		G	f_y	α⋅t	γ					
Tipo	Tipo Designación		V	(kp/cm ²)	(kp/cm²)	(m/m°C)	(t/m³)					
Acero laminado	S275	2140672.8	0.300	825688.1	2803.3	0.000012	7.850					

- Notación:
 E: Módulo de elasticidad
 v: Módulo de Poisson
 G: Módulo de cortadura
 fy: Límite elástico
 αι: Coeficiente de dilatación
 y: Peso específico

2.1.2.2.- Descripción

	Descripción												
Ma	terial	Barra	Pieza	Perfil(Serie)		Longitud (m)		- R	βxz	Lb _{Sup.}	Lb _{Inf.}		
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Periii(Serie)	Indeformable origen	Deformable	Indeformable extremo	βху	рхz	(m)	(m)		
Acero laminado	S275	N3/N1	N3/N1	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N6/N4	N6/N4	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N9/N7	N9/N7	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N12/N10	N12/N10	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N15/N13	N15/N13	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N18/N16	N18/N16	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N21/N19	N21/N19	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N24/N22	N24/N22	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N27/N25	N27/N25	HE 100 B (HEB)	0.051	2.765	-	1.00	1.00	2.800	2.816		
		N3/N6	N3/N6	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-		
		N6/N9	N6/N9	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-		
		N9/N12	N9/N12	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-		
		N12/N15	N12/N15	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-		
		N15/N18	N15/N18	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-		
		N18/N21	N18/N21	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-		
		N1/N4	N1/N4	HE 100 B (HEB)	-	2.500	-	1.00	1.00	-	-		
		N4/N7	N4/N7	HE 100 B (HEB)	-	2.500	-	1.00	1.00	-	-		
		N7/N10	N7/N10	HE 100 B (HEB)	-	2.500	-	1.00	1.00	_	-		
		N10/N13	N10/N13	HE 100 B (HEB)	-	2.500	-	1.00	1.00	_	-		

Fecha: 02/03/21

				De	escripción						
Ma	terial	Barra	Pieza	Df:1/Ci-)		Longitud (m)		0	0	Lb _{Sup.}	Lb _{Inf.}
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Perfil(Serie)	Indeformable origen	Deformable	Indeformable extremo	βху	βxz	(m)	(m)
		N13/N16	N13/N16	HE 100 B (HEB)	-	2.500	-	1.00	1.00	-	-
		N16/N19	N16/N19	HE 100 B (HEB)	-	2.500	-	1.00	1.00	-	-
		N2/N3	N2/N3	SQ 100 x 100 (Barras cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N5/N6	N5/N6	SQ 100 x 100 (Barras cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N8/N9	N8/N9	SQ 100 x 100 (Barras cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N11/N12	N11/N12	cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N14/N15	N14/N15	cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N17/N18	N17/N18	SQ 100 x 100 (Barras cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N20/N21	N20/N21	SQ 100 x 100 (Barras cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N23/N24	N23/N24	SQ 100 x 100 (Barras cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N26/N27	N26/N27	SQ 100 x 100 (Barras cuadradas)	-	2.949	0.051	1.00	1.00	-	-
		N21/N24	N21/N24	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-
		N19/N22	N19/N22	HE 100 B (HEB)	-	2.500	-	1.00	1.00	-	-
		N24/N27	N24/N27	HE 100 B (HEB)	0.050	2.400	0.050	1.00	1.00	-	-
Notación:		N22/N25	N22/N25	HE 100 B (HEB)	-	2.500	-	1.00	1.00	-	-

Notación:
Ni: Nudo inicial
Nf: Nudo final
βκy: Coeficiente de pandeo en el plano 'XY'
βκz: Coeficiente de pandeo en el plano 'XZ'
Lbsup.: Separación entre arriostramientos del ala superior
Lbint.: Separación entre arriostramientos del ala inferior

2.1.2.3.- Características mecánicas

	Tipos de pieza									
Ref.	Piezas									
	N3/N1, N6/N4, N9/N7, N12/N10, N15/N13, N18/N16, N21/N19, N24/N22, N27/N25, N3/N6, N6/N9, N9/N12, N12/N15, N15/N18, N18/N21, N1/N4, N4/N7, N7/N10, N10/N13, N13/N16, N16/N19, N21/N24, N19/N22, N24/N27 y N22/N25									
2	N2/N3, N5/N6, N8/N9, N11/N12, N14/N15, N17/N18, N20/N21, N23/N24 y N26/N27									

Características mecánicas

Fecha: 02/03/21

Material		Dof	Doggringián	Α	Avy	Avz	Iyy	Izz	It
Tipo	Designación	Ref.	Descripción	(cm ²)	(cm ²)	(cm²)	(cm4)	(cm4)	(cm4)
Acero laminado	S275	1	HE 100 B, (HEB)	26.00	15.00	4.32	449.50	167.30	9.25
		2	SQ 100 x 100, (Barras cuadradas)	100.00	83.33	83.33	833.33	833.33	1400.00

Notación:
Ref.: Referencia
A: Área de la sección transversal
Avy: Área de cortante de la sección según el eje local 'Y'
Avz: Área de cortante de la sección según el eje local 'Z'
Iyy: Inercia de la sección alrededor del eje local 'Y'
Izz: Inercia de la sección alrededor del eje local 'Z'
It: Inercia a torsión
Las características mecánicas de las piezas corresponden a la sección en el punto medio de las mismas.

2.1.2.4.- Tabla de medición

			Tabla de medición			
Mater	ial	Pieza	D (11/0)	Longitud	Volumen	Peso
Tipo	Designación		Perfil(Serie)	(m)	(m^3)	(kg)
Acero laminado	S275	N3/N1	HE 100 B (HEB)	2.816	0.007	57.48
		N6/N4	HE 100 B (HEB)	2.816	0.007	57.48
		N9/N7	HE 100 B (HEB)	2.816	0.007	57.48
		N12/N10	HE 100 B (HEB)	2.816	0.007	57.48
		N15/N13	HE 100 B (HEB)	2.816	0.007	57.48
		N18/N16	HE 100 B (HEB)	2.816	0.007	57.48
		-	HE 100 B (HEB)	2.816	0.007	57.48
		N24/N22	HE 100 B (HEB)	2.816	0.007	57.48
		N27/N25	HE 100 B (HEB)	2.816	0.007	57.48
		N3/N6	HE 100 B (HEB)	2.500	0.007	51.02
			HE 100 B (HEB)	2.500	0.007	51.02
		N9/N12	HE 100 B (HEB)	2.500	0.007	51.02
		N12/N15	HE 100 B (HEB)	2.500	0.007	51.02
		N15/N18	HE 100 B (HEB)	2.500	0.007	51.02
		N18/N21	HE 100 B (HEB)	2.500	0.007	51.02
		N1/N4	HE 100 B (HEB)	2.500	0.007	51.02
		N4/N7	HE 100 B (HEB)	2.500	0.007	51.02
		-	HE 100 B (HEB)	2.500	0.007	51.02
		N10/N13	HE 100 B (HEB)	2.500	0.007	51.02
		N13/N16	HE 100 B (HEB)	2.500	0.007	51.02
		N16/N19	HE 100 B (HEB)	2.500	0.007	51.02
		N2/N3	SQ 100×100 (Barras cuadradas)	3.000	0.030	235.50
		N5/N6	SQ 100 x 100 (Barras cuadradas)	3.000	0.030	235.50
		-	SQ 100 x 100 (Barras cuadradas)		0.030	235.50
		N11/N12	SQ 100 x 100 (Barras cuadradas)	3.000	0.030	235.50
			SQ 100 x 100 (Barras cuadradas)	3.000	0.030	235.50
		N17/N18	SQ 100 x 100 (Barras cuadradas)	3.000	0.030	235.50
		N20/N21	SQ 100 x 100 (Barras cuadradas)	3.000	0.030	235.50
		-	SQ 100 x 100 (Barras cuadradas)	3.000	0.030	235.50
			SQ 100 x 100 (Barras cuadradas)	3.000	0.030	235.50
			HE 100 B (HEB)	2.500	0.007	51.02
			HE 100 B (HEB)	2.500	0.007	51.02
		-	HE 100 B (HEB)	2.500	0.007	51.02
		N22/N25	HE 100 B (HEB)	2.500	0.007	51.02

arquesina Fecha: 02/03/21

	Tabla de medición											
Material		Pieza	Dorfil/Corio)	Longitud	Volumen	Peso						
Tipo	Designación	(Ni/Nf)	Perfil(Serie)	(m)	(m³)	(kg)						
Notación:				•								
Ni: Nudo inicial												
Nf: Nudo final												

2.1.2.5.- Resumen de medición

	Resumen de medición											
Mater	Material				Longitue	d		Volum	en		Peso	
Tipo	Designación	Serie	Perfil	Perfil (m)	Serie (m)	Material (m)	Perfil (m³)	Serie (m³)	Material (m³)	Perfil (kg)	Serie (kg)	Material (kg)
			HE 100 B	65.344			0.170			1333.68		
		HEB			65.344			0.170			1333.68	
			SQ 100 x 100	27.000			0.270			2119.50		
		Barras cuadradas			27.000			0.270			2119.50	
Acero laminado	S275					92.344			0.440			3453.18

2.1.2.6.- Medición de superficies

Acero laminado: Medición de las superficies a pintar										
Serie	Perfil	Superficie unitaria (m²/m)	Longitud (m)	Superficie (m²)						
HEB	HE 100 B	0.588	65.344	38.422						
Barras cuadradas	SQ 100 x 100	0.400	27.000	10.800						
			Total	49.222						

2.2.- Cargas

2.2.1.- Barras

Referencias:

'P1', 'P2':

- Cargas puntuales, uniformes, en faja y momentos puntuales: 'P1' es el valor de la carga. 'P2' no se utiliza.
- Cargas trapezoidales: 'P1' es el valor de la carga en el punto donde comienza (L1) y 'P2' es el valor de la carga en el punto donde termina (L2).
- Cargas triangulares: 'P1' es el valor máximo de la carga. 'P2' no se utiliza.
- Incrementos de temperatura: 'P1' y 'P2' son los valores de la temperatura en las caras exteriores o paramentos de la pieza. La orientación de la variación del incremento de temperatura sobre la sección transversal dependerá de la dirección seleccionada.

'L1', 'L2':

- Cargas y momentos puntuales: 'L1' es la distancia entre el nudo inicial de la barra y la posición donde se aplica la carga. 'L2' no se utiliza.
- Cargas trapezoidales, en faja, y triangulares: 'L1' es la distancia entre el nudo inicial de la barra y la posición donde comienza la carga, 'L2' es la distancia entre el nudo inicial de la barra y la posición donde termina la carga.

Unidades:

- Cargas puntuales: t
- Momentos puntuales: t⋅m.
- Cargas uniformes, en faja, triangulares y trapezoidales: t/m.
- Incrementos de temperatura: °C.

	Cargas en barras									
			Valor			ción		Direc	ción	
Barra	Hipótesis	Tipo	P1	P2	L1 (m)	L2 (m)	Ejes	Х	Y	Z
N3/N1	Peso propio				-	-	Globales	0.000	0.000	-1.000
N3/N1	Peso propio	Uniforme			-	-	Globales	0.000	0.000	-1.000
N3/N1	V(0°) H1	Faja	0.024				Globales		0.107	0.994
N3/N1	V(0°) H1	Faja	0.130				Globales			0.994
N3/N1	V(0°) H1	Faja	0.328		2.152	2.816	Globales	0.000	0.107	0.994
N3/N1	V(90°) H1	Uniforme			-	-	Globales	0.000	0.107	0.994
N3/N1	V(90°) H1	Uniforme			-	-	Globales	0.000	0.107	0.994
N3/N1	V(90°) H1	Faja	0.069				Globales			0.994
N3/N1	V(90°) H1	Faja	0.061				Globales			0.994
N3/N1	V(90°) H1	Faja	0.072	-	2.112	2.816	Globales	0.000	0.107	0.994
N3/N1	V(180°) H1	Faja	0.091	-			Globales	0.000	0.107	0.994
N3/N1	V(180°) H1	_	0.021	-	0.000	0.664	Globales	-0.000	0.107	0.994
N3/N1	V(180°) H1		0.228	-	0.000	0.664	Globales	-0.000	0.107	0.994
N3/N1	V(180°) H2	Faja	0.004	-	0.664	2.816	Globales	-0.000	-0.107	-0.994
N3/N1	V(180°) H2	_	0.000	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N3/N1	V(180°) H2	Faja	0.003	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N3/N1	V(270°) H1	Uniforme	0.083	-	-	-	Globales	0.000	0.107	0.994
N3/N1	N(EI)	Uniforme	0.038	-	-	-	Globales	0.000	0.000	-1.000
N3/N1	N(R)	Uniforme	0.019	-	-	-	Globales	0.000	0.000	-1.000
N6/N4	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N6/N4	Peso propio	Uniforme	0.113	-	-	-	Globales	0.000	0.000	-1.000
N6/N4	V(0°) H1	Faja	0.325	-	2.152	2.816	Globales	0.000	0.107	0.994
N6/N4	V(0°) H1	Faja	0.259	-	0.000	2.152	Globales	-0.000	0.107	0.994
N6/N4	V(0°) H1	Faja	0.162	-	2.152	2.816	Globales	0.000	0.107	0.994
N6/N4	V(90°) H1	Uniforme	0.141	-	-	-	Globales	0.000	0.107	0.994
N6/N4	V(90°) H1	Uniforme	0.030	-	-	-	Globales	0.000	0.107	0.994
N6/N4	V(90°) H1	Faja	0.004	-	0.000	0.704	Globales	-0.000	0.107	0.994
N6/N4	V(90°) H1	Faja	0.004	-	0.704	2.112	Globales	-0.000	0.107	0.994
N6/N4	V(90°) H1	Faja	0.004	-	2.112	2.816	Globales	0.000	0.107	0.994
N6/N4	V(180°) H1	Faja	0.181	-	0.664	2.816	Globales	0.000	0.107	0.994
N6/N4	V(180°) H1	Faja	0.289	-	0.000	0.664	Globales	-0.000	0.107	0.994
N6/N4	V(180°) H1	_	0.112	-	0.000	0.664	Globales	-0.000	0.107	0.994
N6/N4	V(180°) H2	Faja	0.007	-	0.664	2.816	Globales	-0.000	-0.107	-0.994
N6/N4	V(180°) H2	Faja	0.006	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N6/N4	V(180°) H2	Faja	0.002	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N6/N4	V(270°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N6/N4	N(EI)	Uniforme	0.076	-	-	-	Globales	0.000	0.000	-1.000
N6/N4	N(R)	Uniforme	0.038	-	-	-	Globales	0.000	0.000	-1.000
N9/N7	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N9/N7	Peso propio	Uniforme	0.113	-	-	-	Globales	0.000	0.000	-1.000
N9/N7	V(0°) H1	Faja	0.259	-	0.000	2.152	Globales	-0.000	0.107	0.994
N9/N7	V(0°) H1	Faja	0.416	-	2.152	2.816	Globales	0.000	0.107	0.994
N9/N7	V(90°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N9/N7	V(180°) H1	Faja	0.369	-	0.000	0.664	Globales	-0.000	0.107	0.994

	Cargas en barras									
			Valor			ción		Direc	ción	
Barra	Hipótesis	Tipo			L1	L2				_
	-	-	P1	P2	(m)	(m)	Ejes	X	Y	Z
N9/N7	V(180°) H1	Faja	0.181	-	0.664	2.816	Globales	0.000	0.107	0.994
N9/N7	V(180°) H2	Faja	0.007	-	0.664	2.816	Globales	-0.000	-0.107	-0.994
N9/N7	V(180°) H2	Faja	0.007	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N9/N7	V(270°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N9/N7	N(EI)	Uniforme	0.076	-	-	-	Globales	0.000	0.000	-1.000
N9/N7	N(R)	Uniforme	0.038	-	-	-	Globales	0.000	0.000	-1.000
N12/N10	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N12/N10	Peso propio	Uniforme	0.113	-	-	-	Globales	0.000	0.000	-1.000
N12/N10	V(0°) H1	Faja	0.259	-	0.000	2.152	Globales	-0.000	0.107	0.994
N12/N10	V(0°) H1	Faja	0.416	-	2.152	2.816	Globales	0.000	0.107	0.994
N12/N10	V(90°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N12/N10	V(180°) H1	Faja	0.369	-	0.000	0.664	Globales	-0.000	0.107	0.994
N12/N10	V(180°) H1	Faja	0.181	-	0.664	2.816	Globales	0.000	0.107	0.994
N12/N10	V(180°) H2	Faja	0.007	-	0.664	2.816	Globales	-0.000	-0.107	-0.994
N12/N10	V(180°) H2	Faja	0.007	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N12/N10	V(270°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N12/N10	N(EI)	Uniforme	0.076	-	-	-	Globales	0.000	0.000	-1.000
N12/N10	N(R)	Uniforme	0.038	-	-	-	Globales	0.000	0.000	-1.000
N15/N13	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N15/N13	Peso propio	Uniforme	0.113	-	-	-	Globales	0.000	0.000	-1.000
N15/N13	V(0°) H1	Faja	0.259	-	0.000	2.152	Globales	-0.000	0.107	0.994
N15/N13	V(0°) H1	Faja	0.416	-	2.152	2.816	Globales	0.000	0.107	0.994
N15/N13	V(90°) H1	Uniforme	0.167	-	-	-	Globales		0.107	0.994
N15/N13	V(180°) H1	Faja	0.369		0.000	0.664	Globales	-0.000	0.107	0.994
	V(180°) H1	_	0.181				Globales		0.107	0.994
N15/N13	V(180°) H2	Faja	0.007	-	0.664	2.816	Globales	-0.000	-0.107	-0.994
-	V(180°) H2	-	0.007		0.000	0.664	Globales		-0.107	-0.994
N15/N13	V(270°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N15/N13	, ,	Uniforme	0.076	-	-	-	Globales	0.000	0.000	-1.000
N15/N13		Uniforme			-	-	Globales	0.000	0.000	-1.000
N18/N16	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
	Peso propio	Uniforme			-	-	Globales	0.000	0.000	-1.000
N18/N16		Faja	0.259				Globales		0.107	0.994
N18/N16		Faja	0.416	-	2.152	2.816	Globales	0.000	0.107	0.994
N18/N16	V(90°) H1	Uniforme	0.167	-	-	-	Globales		0.107	0.994
	V(180°) H1	_	0.369				Globales			0.994
	V(180°) H1	_	0.181	-	0.664	2.816	Globales	0.000	0.107	0.994
	V(180°) H2	_	0.007				Globales			
· ·	V(180°) H2	_	0.007		0.000	0.664	Globales			-0.994
	V(270°) H1				-	-	Globales		0.107	0.994
N18/N16		Uniforme			-	-	Globales		0.000	-1.000
N18/N16		Uniforme			-	-	Globales		0.000	-1.000
	Peso propio				-	-	Globales		0.000	
	Peso propio				-	-	Globales		0.000	
N21/N19	V(0°) H1	Faja	0.259	-	0.000	2.152	Globales	-0.000	0.107	0.994

Barra Hipótesis Tipo P1 P2 Li Li Cm Ciobales C	Cargas en barras										
N21/N19 V(0°) H1				Valor	es	Posi	ción		Direc	ción	
N21/N19 V(180°) H1	Barra	Hipótesis	Tipo	P1	P2			Ejes	Х	Υ	Z
N21/N19 V(180°) H1 Faja 0.369 0.000 0.664 Globales 0.000 0.107 0.994 0.021/N19 V(180°) H2 Faja 0.007 0.0664 2.816 Globales 0.000 0.107 0.994 0.021/N19 V(180°) H1 Faja 0.007 0.000 0.664 Globales 0.000 0.107 0.994 0.021/N19 V(180°) H1 V(180	N21/N19	V(0°) H1	Faja	0.416	-	2.152	2.816	Globales	0.000	0.107	0.994
N21/N19 V(180°) H1 Faja 0.181 0.064 2.816 Globales 0.000 0.107 0.994 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004 0.0	N21/N19	V(90°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N21/N19 V(180°) H2 Faja 0.007 0.0664 2.816 Globales 0.000 0.107 0.994 0.007 0.	N21/N19	V(180°) H1	Faja	0.369	-	0.000	0.664	Globales	-0.000	0.107	0.994
N21/N19	N21/N19	V(180°) H1	Faja	0.181	-	0.664	2.816	Globales	0.000	0.107	0.994
N21/N19	N21/N19	V(180°) H2	Faja	0.007	-	0.664	2.816	Globales	-0.000	-0.107	-0.994
N21/N19 N(EI)	N21/N19	V(180°) H2	Faja	0.007	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N21/N19	N21/N19	V(270°) H1	Uniforme	0.167	-	-	-	Globales	0.000	0.107	0.994
N24/N22	N21/N19	N(EI)	Uniforme	0.076	-	-	-	Globales	0.000	0.000	-1.000
N24/N22	N21/N19	N(R)	Uniforme	0.038	-	-	-	Globales	0.000	0.000	-1.000
N24/N22 V(0°) H1	N24/N22	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N24/N22 V(0°) H1 Faja 0.259 - 0.000 2.152 Globales -0.000 0.107 0.994 N24/N22 V(9°) H1 Faja 0.162 - 0.000 0.664 Globales -0.000 0.107 0.994 N24/N22 V(180°) H1 Faja 0.181 - 0.664 2.816 Globales -0.000 0.107 0.994 N24/N22 V(180°) H1 Faja 0.181 - 0.664 2.816 Globales -0.000 0.107 0.994 N24/N22 V(180°) H2 Faja 0.112 - 0.000 0.664 Globales -0.000 0.107 0.994 N24/N22 V(180°) H2 Faja 0.007 - 0.664 2.816 Globales -0.000 0.107 0.994 N24/N22 V(180°) H2 Faja 0.006 - 0.000 0.664 Globales -0.000 -0.107 -0.994 N24/N22 V(180°) H2 Faja 0.006 - 0.000 0.664 Globales -0.000 -0.107 -0.994 N24/N22 V(180°) H2 Faja 0.002 - 0.000 0.664 Globales -0.000 -0.107 -0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.000 0.664 Globales -0.000 -0.107 -0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.000 0.664 Globales -0.000 -0.107 -0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.704 2.112 Globales -0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.704 2.112 Globales -0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.704 2.112 Globales -0.000 0.107 0.994 N24/N22 V(0°) H1 Faja 0.024 - 0.006 - 0.664 Globales -0.000 0.107 0.994 N24/N22 V(0°) H1 Faja 0.024 - 0.006 - 0.664 Globales -0.000 0.107 0.994 N24/N25 V(0°) H1 Faja 0.024 - 0.006 - 0.664 Globales -0.000 0.107 0.994 N24/N25 V(0°) H1 Faja 0.024 - 0.006 - 0.664 Globales -0.000 0.107 0.994 N24/N25 V(0°) H1 Faja 0.024 - 0.006 - 0.664 Globales -0.000 0.107 0.994 N24/N25 V(180°) H1 Faja 0.024 - 0.006 - 0.664 Globales -0.000 0.107 0.994 N24/N25 V(180°) H1 Faja 0.024 - 0.006 - 0.664 Globales -0.000 0.107 0.994 N24/N25 V(180°) H1 Faja 0.024 - 0.006 - 0.664	N24/N22	Peso propio	Uniforme	0.113	-	-	-	Globales	0.000	0.000	-1.000
N24/N22 V(0°) H1 Faja O.162 C.152 C.152	N24/N22	V(0°) H1	Faja	0.325	-	2.152	2.816	Globales	0.000	0.107	0.994
N24/N22 V(180°) H1 Faja O.289 - O.000 O.664 Globales O.000 O.107 O.994 O.994 N24/N22 V(180°) H1 Faja O.112 O.000 O.664 Globales O.000 O.107 O.994 O.994 N24/N22 V(180°) H1 Faja O.112 O.000 O.664 Globales O.000 O.107 O.994	N24/N22	V(0°) H1	Faja	0.259	-	0.000	2.152	Globales	-0.000	0.107	0.994
N24/N22 V(180°) H1 Faja O.289 - O.000 O.664 Globales O.000 O.107 O.994 N24/N22 V(180°) H1 Faja O.012 - O.000 O.664 Globales O.000 O.107 O.994 N24/N22 V(180°) H2 Faja O.007 - O.664 Z.816 Globales O.000 O.107 O.994 N24/N22 V(180°) H2 Faja O.002 - O.000 O.664 Globales O.000 O.107 O.994 N24/N22 V(180°) H2 Faja O.002 - O.000 O.664 Globales O.000 O.107 O.994 N24/N22 V(270°) H1 Uniforme O.141 - - - Globales O.000 O.107 O.994 N24/N22 V(270°) H1 Faja O.004 - O.000 O.704 Globales O.000 O.107 O.994 N24/N22 V(270°) H1 Faja O.004 - O.000 O.704 Globales O.000 O.107 O.994 N24/N22 V(270°) H1 Faja O.004 - O.000 O.704 Globales O.000 O.107 O.994 N24/N22 V(270°) H1 Faja O.004 - O.704 O.704 O.704 O.704 O.704 O.704 N24/N22 V(270°) H1 Faja O.004 - O.704 O.704	N24/N22	V(0°) H1	Faja	0.162	-	2.152	2.816	Globales	-0.000	0.107	0.994
N24/N22	N24/N22	V(90°) H1	Uniforme	0.167	_	-	-	Globales	0.000	0.107	0.994
N24/N22 V(180°) H1 Faja	N24/N22	V(180°) H1	Faja	0.289	-	0.000	0.664	Globales	-0.000	0.107	0.994
N24/N22 V(180°) H2 Faja	N24/N22	V(180°) H1	Faja	0.181	_	0.664	2.816	Globales	0.000	0.107	0.994
N24/N22 V(180°) H2 Faja	N24/N22	V(180°) H1	Faja	0.112	_	0.000	0.664	Globales	-0.000	0.107	0.994
N24/N22 V(180°) H2 Faja	N24/N22	V(180°) H2	Faja	0.007	_	0.664	2.816	Globales	-0.000	-0.107	-0.994
N24/N22 V(270°) H1 Uniforme 0.141 - - - Globales 0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.000 0.704 Globales -0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.704 2.112 Globales -0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 2.112 2.816 Globales -0.000 0.107 0.994 N24/N22 N(EI) Uniforme 0.076 - - Globales -0.000 0.107 0.994 N24/N25 N(R) Uniforme 0.038 - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.024 - 2.152 2.816 Globales 0.000 0.107 0.994 N27/N25 V(0°) H1 Faja	N24/N22	V(180°) H2	Faja	0.006	_	0.000	0.664	Globales	0.000	-0.107	-0.994
N24/N22 V(270°) H1 Uniforme 0.030 - - - Globales -0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.704 2.112 Globales -0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 0.704 2.112 Globales -0.000 0.107 0.994 N24/N22 V(270°) H1 Faja 0.004 - 2.112 2.816 Globales -0.000 0.107 0.994 N24/N22 N(EI) Uniforme 0.076 - - Globales -0.000 0.000 -1.000 N24/N25 N(EI) Uniforme 0.020 - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.056 - - - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja <t< td=""><td>N24/N22</td><td>V(180°) H2</td><td>Faja</td><td>0.002</td><td>_</td><td>0.000</td><td>0.664</td><td>Globales</td><td>0.000</td><td>-0.107</td><td>-0.994</td></t<>	N24/N22	V(180°) H2	Faja	0.002	_	0.000	0.664	Globales	0.000	-0.107	-0.994
N24/N22 V(270°) H1 N27/N25 V(0°) H1 N27/N25 V(0°) H1 N27/N25 V(180°) H1 N27/N25 V(180°) H1 N27/N25 V(180°) H2 N27/N25 V(180	N24/N22	V(270°) H1	Uniforme	0.141	_	-	-	Globales	0.000	0.107	0.994
N24/N22 V(270°) H1 Faja 0.004 - 0.704 2.112 Globales -0.000 0.107 0.994 N24/N22 N(EI) Uniforme 0.076 - Globales 0.000 0.000 -1.000 N24/N22 N(R) Uniforme 0.038 - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.056 - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales 0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.328 V(180°) H2 Faja 0.021 - Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.024 - 0.000 0.664 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.024 - 0.000 0.664 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.024 - 0.000 0.664 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.003 - 0.000 0.664 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0.000 0.704 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.066 - 0	N24/N22	V(270°) H1	Uniforme	0.030	_	-	-	Globales	-0.000	0.107	0.994
N24/N22 V(270°) H1 Faja 0.004 - 2.112 2.816 Globales -0.000 0.107 0.994 N24/N22 N(R) Uniforme 0.038 - - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.020 - - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.056 - - - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja 0.024 - 2.152 2.816 Globales 0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091	N24/N22	V(270°) H1	Faja	0.004	_	0.000	0.704	Globales	-0.000	0.107	0.994
N24/N22 N(EI) Uniforme 0.076 - - - Globales 0.000 -1.000 N24/N22 N(R) Uniforme 0.038 - - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.056 - - - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja 0.024 - 2.152 2.816 Globales 0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.022 - 0.0664	N24/N22	V(270°) H1	Faja	0.004	_	0.704	2.112	Globales	-0.000	0.107	0.994
N24/N22 N(R) Uniforme 0.038 - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.020 - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.056 - - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja 0.024 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(90°) H1 Uniforme 0.083 - - Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.0664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000	N24/N22	V(270°) H1	Faja	0.004	_	2.112	2.816	Globales	-0.000	0.107	0.994
N27/N25 Peso propio Uniforme 0.020 - - - Globales 0.000 0.000 -1.000 N27/N25 Peso propio Uniforme 0.056 - - - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja 0.024 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(90°) H1 Uniforme 0.083 - - Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 -	N24/N22	N(EI)	Uniforme	0.076	_	-	-	Globales	0.000	0.000	-1.000
N27/N25 Peso propio Uniforme 0.056 - - - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja 0.024 - 2.152 2.816 Globales 0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.004	N24/N22	N(R)	Uniforme	0.038	_	-	-	Globales	0.000	0.000	-1.000
N27/N25 Peso propio Uniforme 0.056 - - - Globales 0.000 0.000 -1.000 N27/N25 V(0°) H1 Faja 0.024 - 2.152 2.816 Globales 0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.004	N27/N25	Peso propio	Uniforme	0.020	_	-	-	Globales	0.000	0.000	-1.000
N27/N25 V(0°) H1 Faja 0.130 - 0.000 2.152 Globales -0.000 0.107 0.994 N27/N25 V(90°) H1 Uniforme 0.083 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.664 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994						-	-				
N27/N25 V(0°) H1 Faja 0.328 - 2.152 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.028 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 -0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(0°) H1	Faja	0.024	_	2.152	2.816	Globales	0.000	0.107	0.994
N27/N25 V(90°) H1 Uniforme 0.083 Globales 0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.228 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.664 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.003 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(0°) H1	Faja	0.130	_	0.000	2.152	Globales	-0.000	0.107	0.994
N27/N25 V(180°) H1 Faja 0.021 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.003 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(0°) H1	Faja	0.328	_	2.152	2.816	Globales	-0.000	0.107	0.994
N27/N25 V(180°) H1 Faja 0.091 - 0.664 2.816 Globales 0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.664 2.816 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.003 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(90°) H1	Uniforme	0.083	_	-	-	Globales	0.000	0.107	0.994
N27/N25 V(180°) H1 Faja 0.228 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.0664 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(180°) H1	Faja	0.021	_	0.000	0.664	Globales	-0.000	0.107	0.994
N27/N25 V(180°) H1 Faja 0.228 - 0.000 0.664 Globales -0.000 0.107 0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.0664 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(180°) H1	Faja	0.091	_	0.664	2.816	Globales	0.000	0.107	0.994
N27/N25 V(180°) H2 Faja 0.004 - 0.664 2.816 Globales -0.000 -0.107 -0.994 N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(180°) H1	Faja			0.000	0.664	Globales	-0.000	0.107	0.994
N27/N25 V(180°) H2 Faja 0.000 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994		-	_								-0.994
N27/N25 V(180°) H2 Faja 0.003 - 0.000 0.664 Globales 0.000 -0.107 -0.994 N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994			_	0.000	-	0.000	0.664	Globales	0.000	-0.107	-0.994
N27/N25 V(270°) H1 Uniforme 0.016 Globales 0.000 0.107 0.994 N27/N25 V(270°) H1 Uniforme 0.059 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.069 - 0.000 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(180°) H2	Faja								
N27/N25 V(270°) H1 Uniforme 0.059 - - - Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 Globales -0.000 0.107 0.994 N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(270°) H1	Uniforme	0.016	-	-	-	Globales	0.000	0.107	0.994
N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994						_	-	Globales	-0.000	0.107	0.994
N27/N25 V(270°) H1 Faja 0.061 - 0.704 2.112 Globales -0.000 0.107 0.994	N27/N25	V(270°) H1	Faja	0.069	-	0.000	0.704	Globales	-0.000	0.107	0.994
			_	0.061	-						0.994
	N27/N25	V(270°) H1	Faja			2.112	2.816	Globales	-0.000	0.107	0.994

	Cargas en barras									
			Valor			ción		Direc	ción	
Barra	Hipótesis	Tipo			L1	L2				_
	-	-	P1	P2	(m)	(m)	Ejes	X	Y	Z
N27/N25	N(EI)	Uniforme	0.038	-	-	-	Globales	0.000	0.000	-1.000
N27/N25	N(R)	Uniforme	0.019	-	-	-	Globales	0.000	0.000	-1.000
N3/N6	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N6/N9	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N9/N12	Peso propio	Uniforme	0.020	-	-	-	Globales		0.000	-1.000
N12/N15	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N15/N18	Peso propio	Uniforme	0.020	-	-	-	Globales		0.000	-1.000
N18/N21	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N1/N4	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N4/N7	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
	Peso propio				-	-	Globales	0.000	0.000	-1.000
N10/N13	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
	Peso propio				-	-	Globales	0.000	0.000	-1.000
N16/N19	Peso propio	Uniforme	0.020	-	-	-	Globales	0.000	0.000	-1.000
N2/N3	Peso propio	Uniforme	0.079	-	-	-	Globales	0.000	0.000	-1.000
	Peso propio	Uniforme	0.056	-	-	-	Globales	0.000	0.000	-1.000
N2/N3	V(0°) H1	Uniforme			-	-	Globales	-0.000	1.000	-0.000
N2/N3	V(90°) H1	Uniforme	0.076	-	-	-	Globales	-0.000	1.000	-0.000
N2/N3	V(90°) H1	Uniforme			-	-	Globales	-0.000	1.000	-0.000
N2/N3	V(180°) H1				-	-	Globales	0.000	-1.000	0.000
N2/N3	V(180°) H2				-	-	Globales	0.000	-1.000	0.000
N2/N3	V(270°) H1	Uniforme	0.080	-	-	-	Globales	-0.000	1.000	-0.000
N5/N6	Peso propio				-	-	Globales	0.000	0.000	-1.000
N5/N6	Peso propio				-	-	Globales		0.000	-1.000
N5/N6	V(0°) H1	Uniforme			-	-	Globales			-0.000
-	V(90°) H1	Uniforme			-	-	Globales			-0.000
N5/N6	V(90°) H1	Uniforme			-	-	Globales			-0.000
N5/N6	V(90°) H1	Uniforme			-	-	Globales			-0.000
	V(180°) H1				-	-	Globales			
	V(180°) H2				-	-	Globales		-1.000	
N5/N6	V(270°) H1				-	-	Globales			
N8/N9	Peso propio				-	-	Globales			-1.000
N8/N9	Peso propio				-	-	Globales		0.000	-1.000
	V(0°) H1	Uniforme			-	-	Globales			-0.000
N8/N9	V(90°) H1	Uniforme			-	-	Globales			-0.000
	V(90°) H1	Uniforme			-	-	Globales			
	V(180°) H1				-	-	Globales			
-	V(180°) H2				-	-	Globales			
	V(270°) H1				-	-	Globales			-0.000
	Peso propio				-	-	Globales		0.000	-1.000
	Peso propio				-	-	Globales		0.000	-1.000
	V(0°) H1	Uniforme			-	-	Globales			-0.000
	V(90°) H1	Uniforme			-	-	Globales			
	V(180°) H1				-	-	Globales			
N11/N12	V(180°) H2	Uniforme	0.256	-	-	-	Globales	0.000	-1.000	0.000

Fecha: 02/03/21

	Cargas en barras									
			Valor	es	Posi	ción		Direc	ción	
Barra	Hipótesis	Tipo	P1	P2	L1 (m)	L2 (m)	Ejes	X	Υ	Z
N11/N12	V(270°) H1	Uniforme	0.160	-	-	-	Globales	-0.000	1.000	-0.000
N14/N15	Peso propio	Uniforme	0.079	-	-	-	Globales	0.000	0.000	-1.000
	Peso propio	Uniforme	0.113	-	-	-	Globales	0.000	0.000	-1.000
N14/N15		Uniforme			-	-	Globales	-0.000	1.000	-0.000
N14/N15	V(90°) H1	Uniforme	0.160	-	-	-	Globales	-0.000	1.000	-0.000
	V(180°) H1				-	-	Globales	0.000	-1.000	0.000
	V(180°) H2				-	-	Globales			
	V(270°) H1				-	-	Globales			-0.000
	Peso propio				-	-	Globales			-1.000
	Peso propio				-	-	Globales		0.000	
		Uniforme			-	-	Globales			-0.000
-		Uniforme			-	-	Globales			-0.000
	V(180°) H1				-	-	Globales			0.000
	V(180°) H2				-	-	Globales			
1	V(270°) H1				-	-	Globales			-0.000
-	Peso propio				-	-	Globales			-1.000
	Peso propio				-	-	Globales		0.000	-1.000
		Uniforme			-	-	Globales			-0.000
		Uniforme			-	-	Globales			
	V(180°) H1				-	-	Globales			0.000
	V(180°) H2				-	-	Globales			
	V(270°) H1				-	-	Globales			-0.000
	V(270°) H1				-	-	Globales			
	Peso propio				-	-	Globales		0.000	-1.000
	Peso propio				-	-	Globales		0.000	-1.000
-	V(0°) H1	Uniforme			-	-	Globales			-0.000
1		Uniforme			-	-	Globales			-0.000
1	V(180°) H1				-	-	Globales			
	V(180°) H2				-	-	Globales			
-	V(270°) H1				-	-	Globales			-0.000
	V(270°) H1				-	-	Globales			-0.000
-	V(270°) H1				-	-	Globales			-0.000
-	Peso propio				-	-	Globales		0.000	-1.000
-	Peso propio				-	-	Globales		0.000	-1.000
	` '	Uniforme			-	-	Globales			-0.000
-		Uniforme			-	-	Globales			-0.000
	V(180°) H1				-	-	Globales			0.000
	V(180°) H2				_	-	Globales		-1.000	
	V(270°) H1				-	-	Globales			-0.000
	V(270°) H1				_	-	Globales			-0.000
-	Peso propio				_	-	Globales		0.000	-1.000
	Peso propio				_	-	Globales		0.000	-1.000
	Peso propio				_	-	Globales		0.000	-1.000
INZZ/INZ5	Peso propio	Official	0.020	-	-	-	Globales	0.000	0.000	-1.000

2.3.- Resultados

Fecha: 02/03/21

2.3.1.- Nudos

2.3.1.1.- Desplazamientos

Referencias:

Dx, Dy, Dz: Desplazamientos de los nudos en ejes globales. Gx, Gy, Gz: Giros de los nudos en ejes globales.

2.3.1.1.1.- Hipótesis

	Desplazamientos de los nudos, por hipótesis										
	_ copiazaiii			amientos							
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz				
2.23.0		(mm)	(mm)	(mm)		(mRad)					
N1	Peso propio					3.194	-0.666				
	V(0°) H1	0.018	47.325	85.479	-33.661	-4.690	1.352				
	V(90°) H1	-1.037	34.325	56.355	-21.594	-0.922	0.107				
	V(180°) H1	0.003	9.133	24.224	-9.817	-2.995	0.364				
	V(180°) H2	-0.009	-12.652	-15.045	5.447	0.838	-0.561				
	V(270°) H1	1.056	24.451	40.137	-15.451	-3.863	1.401				
	N(EI)	-0.004	-7.007	-13.400	5.275	1.441	-0.318				
	N(R)	-0.002	-3.503	-6.700	2.637	0.721	-0.159				
N2	Peso propio	0.000	0.000	0.000	0.000	0.000	0.000				
	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000				
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000				
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000				
	V(180°) H2	0.000	0.000	0.000	0.000	0.000	0.000				
	V(270°) H1	0.000	0.000	0.000	0.000	0.000	0.000				
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000				
	N(R)	0.000	0.000	0.000	0.000	0.000	0.000				
N3	Peso propio	0.008	-12.872	-0.007	8.105	0.037	-0.261				
	V(0°) H1	-0.017	38.165	0.007	-22.723	-0.021	0.669				
	V(90°) H1	-0.008	28.286	0.006	-15.966	-0.010	0.028				
	V(180°) H1		6.538	0.005	-5.484	-0.004	0.037				
	V(180°) H2		-11.039	0.000	5.199	0.010	-0.370				
	V(270°) H1	-0.011	20.149	0.003	-11.392	-0.014	0.753				
	N(EI)	0.004	-5.571	-0.002	3.485	0.005	-0.130				
	N(R)	0.002	-2.786	-0.001	1.743	0.002	-0.065				
N4	Peso propio	-0.007	-18.644			2.350	-0.702				
	V(0°) H1	0.016	52.490	96.117	-37.374		1.374				
	V(90°) H1	-1.038		58.377	-22.276		0.063				
	V(180°) H1	0.002	10.152	31.112	-12.371	-2.249	0.386				
	V(180°) H2					0.751	-0.604				
	V(270°) H1	1.054	29.140	49.130	-18.713		1.385				
	N(EI)	-0.004		-16.738		1.126	-0.345				
	N(R)	-0.002		-8.369	3.257	0.563	-0.172				
N5	Peso propio	0.000	0.000	0.000	0.000	0.000	0.000				
	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000				
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000				
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000				
	V(180°) H2	0.000	0.000	0.000	0.000	0.000	0.000				
	V(270°) H1	0.000	0.000	0.000	0.000	0.000	0.000				

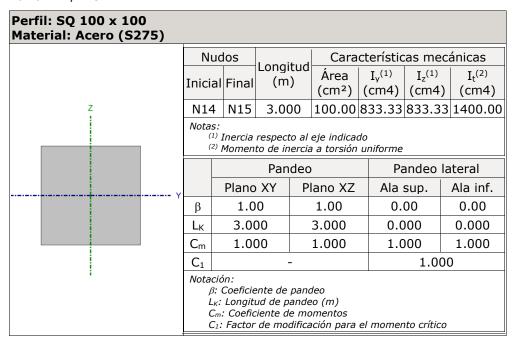
	Desplazam	ientos	de los i	nudos, p	or hipót	esis	
				amientos	=		;
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz
		(mm)	(mm)	(mm)	(mRad)		(mRad)
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000
	N(R)	0.000	0.000	0.000	0.000	0.000	0.000
N6	Peso propio	0.007	-14.476	-0.010	9.587	0.003	-0.395
	V(0°) H1	-0.015	42.195	0.011	-25.456	-0.015	0.887
	V(90°) H1	-0.007	29.176	0.007	-16.441	-0.006	0.003
	V(180°) H1	-0.002		0.009	-6.886	-0.003	0.127
	V(180°) H2	0.008	-13.247	0.000	5.911	0.007	-0.462
	V(270°) H1	-0.009		0.006	-13.716	-0.010	0.925
	N(EI)	0.003	-6.374	-0.003	4.229	0.004	-0.197
	N(R)	0.002	-3.187	-0.001	2.114	0.002	-0.099
N7	Peso propio			-43.187	17.296	1.140	-0.426
117	V(0°) H1	0.011	55.767	101.940	-39.817	-1.449	0.669
	V(90°) H1	-1.040		59.265	-22.726	-0.149	-0.200
	V(180°) H1	0.002	11.283	35.057	-14.172	-1.001	0.293
	V(180°) H2		-16.507	-18.644	6.692	0.527	-0.289
	V(270°) H1	1.052	32.367	55.019	-21.105	-1.675	0.833
	N(EI)	-0.003	-9.083	-18.819	7.399	0.570	-0.212
	N(R)	-0.001	-4.541	-9.409	3.699	0.285	-0.106
N8	Peso propio	0.000	0.000	0.000	0.000	0.000	0.000
INO	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H2	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H2 V(270°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	,	0.000	0.000	0.000	0.000	0.000	0.000
	N(EI)						
NO	N(R)	0.000	0.000	0.000	0.000	0.000	0.000
N9	Peso propio	0.005	-15.875	-0.011	10.530	0.005	-0.267
	V(0°) H1	-0.011	44.846	0.012	-26.983	-0.007	0.452
	V(90°) H1	-0.005		0.006	-16.568	-0.003	-0.174
	V(180°) H1	-0.002		0.009	-7.537	-0.003	0.162
	V(180°) H2		-14.510		6.525	0.003	-0.205
	V(270°) H1	-0.007		0.006	-15.251	-0.004	0.561
	N(EI)	0.003	-7.068	-0.003	4.693	0.002	-0.133
	N(R)	0.001	-3.534	-0.001	2.347	0.001	-0.066
N10	Peso propio				18.030	0.391	-0.175
	V(0°) H1	0.006	57.166	104.106	-40.661	-0.441	0.238
	V(90°) H1	-1.042		59.301	-22.791	0.074	-0.195
	V(180°) H1	0.001	11.961	36.549	-14.805	-0.300	0.128
	V(180°) H2		-17.131		7.066	0.250	-0.113
	V(270°) H1	1.048	33.997	57.837	-22.236	-0.691	0.446
	N(EI)	-0.001		-19.730	7.774	0.203	-0.089
	N(R)	-0.001	-4.780	-9.865	3.887	0.102	-0.044
N11	Peso propio		0.000	0.000	0.000	0.000	0.000
	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000

	Desplazam	ientos	de los i	nudos, p	or hipót	esis	
	_			amientos	=		;
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz
		(mm)	(mm)	(mm)	(mRad)	(mRad)	(mRad)
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H2	0.000	0.000	0.000	0.000	0.000	0.000
	V(270°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000
	N(R)	0.000	0.000	0.000	0.000	0.000	0.000
N12	Peso propio	0.003	-16.636	-0.011	10.987	0.002	-0.117
	V(0°) H1	-0.006	46.014	0.012	-27.622	-0.003	0.169
	V(90°) H1	-0.003	28.680	0.007	-16.480	-0.003	-0.155
	V(180°) H1	-0.001	8.046	0.009	-7.877	-0.001	0.084
	V(180°) H2	0.003	-15.031	0.000	6.810	0.001	-0.076
	V(270°) H1	-0.003	27.801	0.006	-16.016	0.000	0.317
	N(EI)	0.001	-7.448	-0.003	4.923	0.001	-0.059
	N(R)	0.001	-3.724	-0.001	2.462	0.000	-0.029
N13	Peso propio		-21.723	-45.421	18.205	0.000	0.000
	V(0°) H1	0.000	57.526	104.590	-40.842	0.000	0.000
	V(90°) H1	-1.045	34.708	58.917	-22.655	0.245	-0.257
	V(180°) H1	0.000	12.160	36.876	-14.935	0.000	0.000
	V(180°) H2	0.000	-17.306	-19.910	7.188	0.000	0.000
	V(270°) H1	1.045	34.708	58.917	-22.655	-0.245	0.257
	N(EI)	0.000	-9.699	-19.963	7.866	0.000	0.000
	N(R)	0.000	-4.850	-9.981	3.933	0.000	0.000
N14	Peso propio	0.000	0.000	0.000	0.000	0.000	0.000
141	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H2	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000
	N(R)		0.000	0.000	0.000		
NI1E	. ,	0.000				0.000	0.000
N15	Peso propio	0.000	-16.859	-0.011	11.112	0.000	0.000
	V(0°) H1	0.000	46.321	0.012	-27.782	0.000	0.000
	V(90°) H1	0.000	28.396	0.007	-16.340	-0.002	-0.192
	V(180°) H1	0.000	8.210	0.009	-7.969	0.000	0.000
	V(180°) H2	0.000	-15.173	0.000	6.893	0.000	0.000
	V(270°) H1	0.000	28.396	0.007	-16.340	0.002	0.192
	N(EI)	0.000	-7.561	-0.003	4.988	0.000	0.000
	N(R)	0.000	-3.781	-0.001	2.494	0.000	0.000
N16	Peso propio	0.003	-21.452	-44.978	18.030	-0.391	0.175
	V(0°) H1	-0.006		104.106	-40.661	0.441	-0.238
	V(90°) H1	-1.048		57.837	-22.236	0.691	-0.446
	V(180°) H1	-0.001	11.961	36.549	-14.805	0.300	-0.128
	V(180°) H2	0.003	-17.131	-19.605	7.066	-0.250	0.113
	V(270°) H1	1.042	35.033	59.301	-22.791	-0.074	0.195
	N(EI)	0.001	-9.561	-19.730	7.774	-0.203	0.089
	N(R)	0.001	-4.780	-9.865	3.887	-0.102	0.044

	Desplazam	nientos	de los i	nudos, p	or hipót	esis	
				amientos	-		;
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz
		(mm)	(mm)	(mm)	(mRad)	(mRad)	
N17	Peso propio	0.000	0.000	0.000	0.000	0.000	0.000
	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H2	0.000	0.000	0.000	0.000	0.000	0.000
	V(270°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000
	N(R)	0.000	0.000	0.000	0.000	0.000	0.000
N18	Peso propio	-0.003	-16.636	-0.011	10.987	-0.002	0.117
	V(0°) H1	0.006	46.014	0.012	-27.622	0.003	-0.169
	V(90°) H1	0.003	27.801	0.006	-16.016	0.000	-0.317
	V(180°) H1	0.001	8.046	0.009	-7.877	0.001	-0.084
	V(180°) H2		-15.031	0.000	6.810	-0.001	0.076
	V(270°) H1	0.003	28.680	0.007	-16.480	0.003	0.155
	N(EI)	-0.001	-7.448	-0.003	4.923	-0.001	0.059
	N(R)	-0.001	-3.724	-0.001	2.462	0.000	0.029
N19	Peso propio	0.005	-20.499	-43.187	17.296	-1.140	0.426
	V(0°) H1	-0.011	55.767	101.940	-39.817	1.449	-0.669
	V(90°) H1	-1.052	32.367	55.019	-21.105	1.675	-0.833
	V(180°) H1	-0.002	11.283	35.057	-14.172	1.001	-0.293
	V(180°) H2	0.006	-16.507	-18.644	6.692	-0.527	0.289
	V(270°) H1	1.040	35.295	59.265	-22.726	0.149	0.200
	N(EI)	0.003	-9.083	-18.819	7.399	-0.570	0.212
	N(R)	0.001	-4.541	-9.409	3.699	-0.285	0.106
N20	Peso propio	0.000	0.000	0.000	0.000	0.000	0.000
	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H2	0.000	0.000	0.000	0.000	0.000	0.000
	V(270°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000
	N(R)	0.000	0.000	0.000	0.000	0.000	0.000
N21	Peso propio	-0.005	-15.875	-0.011	10.530	-0.005	0.267
	V(0°) H1	0.011	44.846	0.012	-26.983	0.007	-0.452
	V(90°) H1	0.007	26.473	0.006	-15.251	0.004	-0.561
	V(180°) H1	0.002	7.528	0.009	-7.537	0.003	-0.162
	V(180°) H2	-0.006	-14.510	0.000	6.525	-0.003	0.205
	V(270°) H1		28.946	0.006	-16.568	0.003	0.174
	N(EI)	-0.003	-7.068	-0.003	4.693	-0.002	0.133
	N(R)	-0.001	-3.534	-0.001	2.347	-0.001	0.066
N22	Peso propio			-38.928		-2.350	0.702
	V(0°) H1	-0.016	52.490	96.117	-37.374	3.423	-1.374
	V(90°) H1	-1.054	29.140	49.130	-18.713	3.091	-1.385
	V(180°) H1			31.112	-12.371	2.249	-0.386
	V(180°) H2				6.136	-0.751	0.604
1	-	į.	i.	į.	į.		1

	Desplazam	ientos	de los i	nudos, p	or hipót	esis	
Desplazamientos en ejes globales							
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz
		(mm)	(mm)	(mm)	(mRad)	(mRad)	(mRad)
	V(270°) H1	1.038	35.429	58.377	-22.276	0.614	-0.063
	N(EI)	0.004	-8.166	-16.738	6.514	-1.126	0.345
	N(R)	0.002	-4.083	-8.369	3.257	-0.563	0.172
N23	Peso propio		0.000	0.000	0.000	0.000	0.000
	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H1		0.000	0.000	0.000	0.000	0.000
	V(180°) H2		0.000	0.000	0.000	0.000	0.000
	V(270°) H1		0.000	0.000	0.000	0.000	0.000
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000
	N(R)	0.000	0.000	0.000	0.000	0.000	0.000
N24	Peso propio			-0.010	9.587	-0.003	0.395
	V(0°) H1	0.015	42.195	0.011	-25.456	0.015	-0.887
	V(90°) H1	0.009	23.878	0.006	-13.716	0.010	-0.925
	V(180°) H1		6.819	0.009	-6.886	0.003	-0.127
	V(180°) H2			0.000	5.911	-0.007	0.462
	V(270°) H1		29.176	0.007	-16.441	0.006	-0.003
	N(EI)	-0.003		-0.003	4.229	-0.004	0.197
	N(R)	-0.002		-0.001	2.114	-0.002	0.099
N25	Peso propio			-31.767	12.646	-3.194	0.666
	V(0°) H1	-0.018		85.479	-33.661	4.690	-1.352
	V(90°) H1	-1.056		40.137	-15.451	3.863	-1.401
	V(180°) H1			24.224	-9.817	2.995	-0.364
	V(180°) H2		-12.652	-15.045	5.447	-0.838	0.561
	V(270°) H1		34.325	56.355	-21.594	0.922	-0.107
	N(EI)	0.004	-7.007	-13.400	5.275	-1.441	0.318
NOC	N(R)	0.002	-3.503	-6.700	2.637	-0.721	0.159
N26	Peso propio		0.000	0.000	0.000	0.000	0.000
	V(0°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	V(180°) H1		0.000	0.000	0.000	0.000	0.000
	V(180°) H2		0.000	0.000	0.000	0.000	0.000
	V(270°) H1	0.000	0.000	0.000	0.000	0.000	0.000
	N(EI)	0.000	0.000	0.000	0.000	0.000	0.000
NIOT	N(R)	0.000	0.000	0.000	0.000	0.000	0.000
N27	Peso propio V(0°) H1			-0.007	8.105	-0.037	0.261
	` '	0.017	38.165	0.007	-22.723	0.021	-0.669
	V(90°) H1 V(180°) H1	0.011	20.149	0.003	-11.392	0.014	-0.753
		0.003	6.538	0.005	-5.484 5.100	0.004	-0.037
	V(180°) H2 V(270°) H1			0.000	5.199	-0.010	0.370
	,		28.286	0.006	-15.966	0.010	-0.028
	N(EI)	-0.004 -0.003		-0.002 -0.001	3.485	-0.005	0.130
	N(R)	-0.002	-2.786	-0.001	1.743	-0.002	0.065

	ı	ı		ı							1	
	Pos.	Flecha		Pos. (m)	Flecha		Pos.	Flecha		Pos.	Flech	
	(m)	(mm)		1.185	(mm)	2.17	(m)	(mm)		(m)	(mm)	
N3/N1	2.173 2.173	L/(>1000)						L/(>1000)	0.42		L/(>1000)	4.34
	2.173		0.33		L/(>1000)	2.70			0.49			4.67
N6/N4		L/(>1000)						L/(>1000)				
	2.173		0.19		L/(>1000)	3.13			0.25		L/(>1000)	5.11
N9/N7								L/(>1000)			L/918.7	5.11
	2.173	L/(>1000)		0.988	L/883.2				0.10		L/910.7	5.26
N12/N10		L/(>1000)			L/835.9			L/(>1000)			L/866.2	3.20
				0.988					0.10			5.30
N15/N13	0.593	L/(>1000)			L/825.6			L/(>1000)			L/856.3	5.30
	2.173			0.988		3.31			0.10			5.26
N18/N16	2.1/3	L/(>1000)			L/835.9			L/(>1000)			L/866.2	3.20
	2.173			0.988	•	3.13		L/(>1000)				5.11
N21/N19	2.1/3	L/(>1000)			L/883.2			L/(>1000)			L/918.7	3.11
	2.173				L/003.2			(>1000)			_	4.67
N24/N22		L/(>1000)			L/(>1000)			L/(>1000)				
	2.173				L/(>1000)						L/ (> 1000)	4.34
N27/N25					L/(>1000)			L/(>1000)				
	0.600	L/(>1000)			L/(>1000)	n n4	0.600		0.42		L/ (> 1000)	0.01
N3/N6		L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	1.800				L/(>1000)				0.33			0.01
N6/N9 N9/N12		L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	1.600		0.14			0.02			0.18			0.00
		L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	1.400				2/(>1000)	0.02			0.10			0.00
N12/N15		L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
			0.08		2/(>1000)	0.02			0.10		L/ (> 1000)	0.00
N15/N18	1.000	L/(>1000)			L/(>1000)			L/(>1000)				
		2, (* 2000)										0.00
N18/N21	0.800	L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	0.625		0.21								_, (,,	0.53
N1/N4					L/(>1000)			L/(>1000)				
		, (0.27	1.250	, (0.65	1.667	, ,	0.41		, (0.86
N4/N7		L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	1.458		0.18			0.46			0.24		, ,	0.52
N7/N10		L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	1 458		0.12			0.29			0.14			0.28
N10/N13	1.458	L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	1.042		0.12			0.29			0.14			0.28
N13/N16	1.042	L/(>1000)			L/(>1000)			L/(>1000)			L/(>1000)	
	1 042		0.18			0.46			0.24		, ,	0.52
N16/N19	1.042	L/(>1000)			L/(>1000)		0.833	L/(>1000)		1.250	L/(>1000)	
	1.896		0.02	1.264		6.06	1.685			1.264		11.36
N2/N3	1.896	L/(>1000)		1.264	L/486.6		1.685	L/(>1000)		1.264	L/497.6	
NE (NG	1.474		0.01	1.264		6.99	1.685		0.01	1.264		12.67
N5/N6	1.474	L/(>1000)			L/422.0			L/(>1000)			L/431.5	
NO (C)	1.685		0.00			7.73				1.264		13.63
N8/N9		L/(>1000)		1.474	L/381.5			L/(>1000)			L/385.0	
NI4 4 /8:4 C	1.474		0.00			8.09			0.00			14.06
N11/N12		L/(>1000)		1.474	L/364.6			L/(>1000)			L/365.5	
NI4 4 /NI4 =	1 896		0.00		-	8.19			0.00			14.17
N14/N15		L/(>1000)			L/360.1			L/(>1000)			L/364.3	


rquesina Fecha: 02/03/21

Flechas												
Cours	Flecha máxima absoluta xy Flecha máxima relativa xy											
Grupo	Pos. (m)							Flecha (mm)			Flecha (mm)	
N117/N110	1.474		0.00	1.474		8.09	1.264		0.00	1.264		14.06
INI//INIO	1.474	L/(>1000)		1.474	L/364.6		1.264	L/(>1000)		1.264	L/365.5	
	1 685		0.00	1.474		7.73	1.474		0.00	1.264		13.63
N20/N21	1.685	L/(>1000)		1.474	L/381.5		1.474	L/(>1000)		1.264	L/385.0	
N23/N24	1.474		0.01	1.264		6.99	1.685		0.01	1.264		12.67
11/23/11/24	1.474	L/(>1000)		1.264	L/422.0		1.474	L/(>1000)		1.264	L/431.5	
N26/N27	1.896		0.02	1.264		6.06	1.685		0.01	1.264		11.36
11/20/11/27	1.896	L/(>1000)		1.264	L/486.6		1.685	L/(>1000)		1.264	L/497.6	
ND1/ND4	0.600		0.22	1.400		0.02	0.600		0.33	1.800		0.01
NZ1/NZ4	0.600	L/(>1000)		1.400	L/(>1000)		0.600	L/(>1000)		1.800	L/(>1000)
	ሀ හვვ		N 27	1 250		0.65	0.833		0.41	1.250		0.86
1119/1122	0.833	L/(>1000)		1.250	L/(>1000)		0.833	L/(>1000)		1.250	L/(>1000)
N24/N27	1 200		0.28	1.400		0.04	1.800		0.42	1.800		0.01
	1.800	L/(>1000)		1.400	L/(>1000)		1.800	L/(>1000)		1.800	L/(>1000)
N22/N25	1.875		0.21	1.042		0.42	1.875		0.31	1.042		0.53
	1.875	L/(>1000)		1.042	L/(>1000)		1.875	L/(>1000)		1.250	L/(>1000)

2.3.2.4.- Comprobaciones E.L.U. (Completo)

Nota: Se muestra el listado completo de comprobaciones realizadas para las 10 barras con mayor coeficiente de aprovechamiento.

Barra N14/N15

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

λ̄: 1.11 ✓

Fecha: 02/03/21

A: 100.00 cm²

N_{cr}: 195.626 t

N_{cr,y}: 195.626 t

N_{cr,z}: 195.626 t

 ∞

I_v: 833.33 cm4

I_z: 833.33 cm4

It: 1400.00 cm4

I_w: 27777.78 cm6

3.000

3.000

0.000

4.08

2.89

2.89

0.00

E: 2140673 kp/cm²

G: 825688 kp/cm²

m

m

m

cm

cm

cm

mm

 $N_{cr,T}$:

L_{kv}:

 L_{kz} :

 L_{kt} :

io:

i_v:

i_z:

y₀:

f_y: 2395.51 kp/cm²

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de Clase: desarrollo de la resistencia plástica de los elementos planos comprimidos

de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

c) Axil crítico elástico de pandeo por torsión.

Donde:

I_y: Momento de inercia de la sección bruta, respecto al eje Υ.

I_z: Momento de inercia de la sección bruta, respecto al eje

It: Momento de inercia a torsión uniforme.

Iw: Constante de alabeo de la sección.

E: Módulo de elasticidad.

G: Módulo de elasticidad transversal.

L_{ky}: Longitud efectiva de pandeo por flexión, respecto al eje

Lkz: Longitud efectiva de pandeo por flexión, respecto al eje

Lkt: Longitud efectiva de pandeo por torsión.

i₀: Radio de giro polar de la sección bruta, respecto al

centro de torsión.

Siendo:

i_y , i_z: Radios de giro de la sección bruta, respecto a los ejes principales de inercia Y y Z.

yo, zo: Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

Z0:

0.00 mm

narquesina Fecha: 02/03/21

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.004

V

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N14, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo.

 $N_{t,Ed}$: 0.864 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

 $N_{t,Rd}$: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra.

A: 100.00 cm² **f_{vd}**: 2281.44 kp/cm²

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero.

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

 $\gamma_{\text{M0}}\colon$ Coeficiente parcial de seguridad del material.

умо: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: **0.008 √**

η: **0.016 √**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N14, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.771 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

N_{c,Rd}: 228.144 t

Fecha: 02/03/21

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos

comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase :

A: 100.00 cm²

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

 $f_v: 2395.51 \text{ kp/cm}^2$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 109.681 t

γмo: 1.05

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

A: 100.00 cm² **f_{yd}**: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_v: 2395.51 kp/cm²

γ**м1**: 1.05

χ: Coeficiente de reducción por pandeo.

 $\chi_{y}: 0.48$

χ_z :

Siendo:

фу: 1.33

0.48

1.33 φz:

α: Coeficiente de imperfección elástica.

 α_{y} : 0.49 0.49

α, :

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{\mathbf{v}}: 1.11$

 $\overline{\lambda}_z$: 1.11

N_{cr}: 195.626 t

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr.v}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,T}: Axil crítico elástico de pandeo por torsión.

N_{cr.z}: Axil crítico elástico de pandeo por flexión

respecto al eje Z.

N_{cr,v}: 195.626 t

N_{cr.z}: 195.626 t

 $N_{cr,T}$: ∞

arquesina Fecha: 02/03/21

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.507**

 \checkmark

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N14, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{+} : 2.894 t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N14, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $M_{Ed}^{-}: 2.875 \text{ t·m}$

 $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$: 5.704 t·m

Clase: 2

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathbf{pl},\mathbf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: _{250.00} \text{ cm}^3$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0} : Coeficiente parcial de seguridad del material. $f_v : 2395.51 \text{ kp/cm}^2$ $\gamma_{M0} : 1.05$

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < __0.001___•

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N14, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

 $M_{Ed}^{+}: 0.001 \text{ t} \cdot \text{m}$

arquesina Fecha: 02/03/21

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N14, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(90^{\circ})H1$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: *5.704* t⋅m

 M_{Ed}^{-} : 0.001 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{pl,z}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,z}: 250.00 \text{ cm}^3$

f_{yd}: Resistencia de cálculo del acero.

fyd: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

γмο: Coeficiente parcial de seguridad del material.

умо: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.009

_ 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N14, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.141 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 131.719 t

Donde:

 A_v : Área transversal a cortante.

 $A_{v}: 100.00 \text{ cm}^{2}$

Siendo:

h: Canto de la sección.t: Espesor de la chapa.

h: 100.00 mm **t**: 100.00 mm

fyd: Resistencia de cálculo del acero.

f_{yd}: 2281.44 kp/cm²

Fecha: 02/03/21

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : ____1.05___

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < **0.001**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(270^{\circ})H1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.000 t

El esfuerzo cortante resistente de cálculo $\mathbf{V}_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

 A_v : Área transversal a cortante. A_v : 100.00 cm²

Siendo:

h: Canto de la sección.h: $\underline{100.00}$ mmt: Espesor de la chapa.t: $\underline{100.00}$ mm

 $\mathbf{f_{vd}}$: Resistencia de cálculo del acero. $\mathbf{f_{vd}}$: 2281.44 kp/cm²

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

Fecha: 02/03/21

1.141 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.141 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo.

V_{c,Rd}: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante V_{c,Rd}.

0.000 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N14, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.000 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo.

V_{c,Rd}: 131.719 t

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.763

η: **0.777**

η: **0.625** 💙

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N14, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

Donde:

arquesina Fecha: 02/03/21

N c,Ed: Axil de compresión solicitante de cálculo pésimo.	N _{c,Ed} :	1.621	_t
$\mathbf{M}_{\mathbf{y},\mathbf{Ed}},\ \mathbf{M}_{\mathbf{z},\mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los	$\mathbf{M}_{y,Ed}^{-}$:	2.875	t∙m
ejes Y y Z, respectivamente.	$M_{z,Ed}^+$:	0.000	t∙m

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

flexión simple. $N_{pl,Rd}$: Resistencia a compresión de la sección bruta. $N_{pl,Rd}$: $\underline{228.144}$ t $M_{el,Rd,y}$; Resistencia a flexión de la sección bruta en condiciones $M_{el,Rd,y}$: $\underline{3.802}$ t·m

 $M_{el,Rd,y}$, $M_{el,Rd,z}$: Resistencia a flexión de la sección bruta en condiciones elásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.
 W_{el,y}, W_{el,z}: Módulos resistentes elásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

f_{vd}: Resistencia de cálculo del acero.

A: 100.00 cm² **W**_{el,y}: 166.67 cm³ **W**_{el,z}: 166.67 cm³

f_{vd}: 2281.44 kp/cm²

M_{el,Rd,z}: 3.802 t⋅m

3

Clase :

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2395.51 kp/cm² γ_{M1} : Coeficiente parcial de seguridad del material. γ_{M1} : 1.05

k_v, **k**_z: Coeficientes de interacción.

 $k_y: 1.01$

 k_z : 1.01

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente. $C_{m,y}$: 1.00 $C_{m,z}$: 1.00

 χ_y , χ_z : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.

 $\bar{\lambda}_y$, $\bar{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.

 α_{v} , α_{z} : Factores dependientes de la clase de la sección.

 $\chi_y : 0.48$ $\chi_z : 0.48$

 $\frac{\overline{\lambda}_{\mathbf{y}}}{\overline{\lambda}_{\mathbf{z}}}: \frac{1.11}{1.11}$

 $\alpha_{\mathbf{y}}$: 0.80 $\alpha_{\mathbf{z}}$: 1.00

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

Fecha: 02/03/21

1.141 t ≤ 65.860 t

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo.

 $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo.

V_{Ed,z}: 1.141 t V_{c,Rd,z}: 131.719 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: **0.006 √**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.011 t⋅m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 1.844 t⋅m

Donde:

W_T: Módulo de resistencia a torsión. f_{vd}: Resistencia de cálculo del acero. **W**_T: 140.00 cm³

f_{yd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 $f_v: 2395.51 \text{ kp/cm}^2$

γ_{M0}: Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.006 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N14, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.800 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.011 t⋅m

Fecha: 02/03/21

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 130.915 t

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. **V**_{pl,Rd}: 131.719 t

ττ, Ed: Tensiones tangenciales por torsión. ττ,**Ed**: 8.05 kp/cm²

Siendo:

W_T: 140.00 cm³ $\mathbf{W}_{\mathbf{T}}$: Módulo de resistencia a torsión.

f_{vd}: Resistencia de cálculo del acero. fyd: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 2395.51 kp/cm²

γ**мо**: 1.05 γ_{M0}: Coeficiente parcial de seguridad del material.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.006 **√**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N14, para la combinación de acciones 1.35·PP+1.5·V(90°)H1+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 0.800 t

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. $M_{T,Ed}$: 0.011 t·m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 130.915 t

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. **V**_{pl,Rd}: 131.719 t

τ_{T.Ed}: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: 8.05 kp/cm²

Siendo:

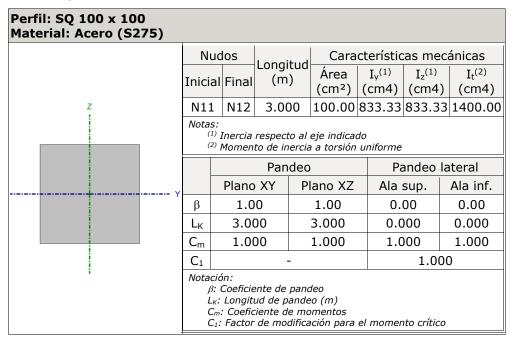
W_T: Módulo de resistencia a torsión. **W**_T: 140.00 cm³

f_{yd}: 2281.44 kp/cm² fyd: Resistencia de cálculo del acero.

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) $f_v: 2395.51 \text{ kp/cm}^2$

 γ_{M0} : Coeficiente parcial de seguridad del material.


Fecha: 02/03/21

умо: 1.05

Fecha: 02/03/21

Barra N11/N12

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}$: 1.11 \checkmark

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

Clase: 3

A: 100.00 cm² **f**_v: 2395.51 kp/cm² **N**_{cr}: 195.626 t

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y. **N**_{cr,y}

 $N_{cr,y}$: 195.626 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

c) Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Donde:

 $\mathbf{I_y}$: Momento de inercia de la sección bruta, respecto al eje

I_v: 833.33 cm4

Fecha: 02/03/21

I _z : Momento de inercia de la sección bruta, respecto al eje Z.	I, :	833.33	cm4
I _t : Momento de inercia a torsión uniforme.		1400.00	-
I _w : Constante de alabeo de la sección.	-	27777.78	_
E: Módulo de elasticidad.	E :	2140673	kp/cm²
G : Módulo de elasticidad transversal.	-	825688	
$\mathbf{L_{ky}}$: Longitud efectiva de pandeo por flexión, respecto al eje Y.	1.	3 000	m
L _{kz} : Longitud efectiva de pandeo por flexión, respecto al eje	L _{ky} :	3.000	- 1111
Z.	L_{kz} :	3.000	m
L _{kt} : Longitud efectiva de pandeo por torsión.	L_{kt} :	0.000	m
i _o : Radio de giro polar de la sección bruta, respecto al centro de torsión.	i ₀ :	4.08	cm
Siendo:			
iy, iz: Radios de giro de la sección bruta, respecto	i _y :	2.89	cm
a los ejes principales de inercia Y y Z.	i _z :	2.89	cm
yo, zo: Coordenadas del centro de torsión en la	y ₀ :	0.00	mm
dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad			
de la sección.	Z ₀ :	0.00	mm

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.004

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N11, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 0.865 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra.A: $\underline{100.00}$ cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : $\underline{2281.44}$ kp/cm²

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Fecha: 02/03/21

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.008

η: 0.016 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.768 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

 $N_{c,Rd}$: 228.144 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase : ____*3*

A: 100.00 cm² **f_{vd}**: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_v: 2395.51 kp/cm²

γмo: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

 $N_{b,Rd}$: 109.681 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

A: 100.00 cm² **f**_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_v: 2395.51 kp/cm²

γ_{M1}: 1.05

narquesina Fecha: 02/03/21

 $\chi_{y}: 0.48$

χ_z :

Siendo:

φ_v: 1.33

0.48

φ_z: 1.33

α: Coeficiente de imperfección elástica.

 α_y : 0.49

0.49

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{y}$: 1.11

 $\overline{\lambda}_z$: 1.11

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 195.626 t

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,v}: 195.626 t

N_{cr,z}: Axil crítico elástico de pandeo por flexión

respecto al eje Z.

 $N_{cr,z}$: 195.626 t

N_{cr,T}: Axil crítico elástico de pandeo por torsión.

N_{cr,T} :____ ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.504**

√

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 2.877 t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones $1.35 \cdot PP+1.5 \cdot V(180^{\circ})H2+0.75 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁻: 2.844 t⋅m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

M_{c,Rd}: ___5.704 __t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : 2

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 250.00 \text{ cm}^3$

f_{yd}: Resistencia de cálculo del acero.

f_{yd} : <u>2281.44</u> kp/cm²

Fecha: 02/03/21

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : ___1.05_

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < **0.001 √**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N11, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(270^{\circ})H1$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺ : <u>0.001</u> t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N11, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(90^{\circ})H1$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{Ed}}^{\mathsf{-}}$: 0.001 t·m

El momento flector resistente de cálculo Mc,Rd viene dado por:

 $M_{c,Rd}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,z}: 250.00 \text{ cm}^3$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.009

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.136 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

 A_v : Área transversal a cortante.

 A_v : 100.00 cm²

Siendo:

h: Canto de la sección. t: Espesor de la chapa. **h**: 100.00 mm t: 100.00 mm

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

0.000 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

arquesina Fecha: 02/03/21

 A_v : Área transversal a cortante. A_v : 100.00 cm²

Siendo:

h: Canto de la sección.h: $\underline{100.00}$ mmt: Espesor de la chapa.t: $\underline{100.00}$ mm

 f_{vd} : Resistencia de cálculo del acero. f_{vd} : 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

1.136 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^\circ)H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.136 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

 $0.000 t \le 65.860 t$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.000 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

rquesina Fecha: 02/03/21

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.755** 🗸

η: **0.769** 🗸

η: **0.619** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N11, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

Donde:

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{y},\mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los

ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y

flexión simple.

 $N_{pl,Rd}$: Resistencia a compresión de la sección bruta.

 $\mathbf{M}_{\mathsf{el},\mathsf{Rd},\mathsf{y},}$ $\mathbf{M}_{\mathsf{el},\mathsf{Rd},\mathsf{z}}$: Resistencia a flexión de la sección bruta en condiciones

elásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

 $\mathbf{W}_{\text{el,y}},\,\mathbf{W}_{\text{el,z}}\colon$ Módulos resistentes elásticos correspondientes a la fibra

comprimida, alrededor de los ejes Y y Z, respectivamente.

f_{vd}: Resistencia de cálculo del acero.

M_{el,Rd,z}: <u>3.802</u> t⋅m

N_{pl,Rd}: 228.144 t

 $M_{el,Rd,y}$: 3.802 t·m

N_{c,Ed}: 1.618 t

 $M_{y,Ed}^{-}$: 2.844 t·m

 $M_{z,Ed}^+$: 0.000 t·m

3

Clase :

 $\mathbf{A} : \underline{100.00} \text{ cm}^2$ $\mathbf{W_{el,v}} : \underline{166.67} \text{ cm}^3$

 $W_{el,z}: 166.67 \text{ cm}^3$

f_{vd}: 2281.44 kp/cm²

 $f_v: 2395.51 \text{ kp/cm}^2$

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

γ_{M1}: 1.05

 $\mathbf{k_{y}},\,\mathbf{k_{z}}$: Coeficientes de interacción.

 k_y : 1.01

k_z: 1.01

 $C_{m,y}$:

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente.

D/ --!-- 20

1.00

respectivamente.

Fecha: 02/03/21

C _{m,z} :	1.00
χ _γ :_	0.48
χ _z : _	0.48

 $\overline{\lambda}_y,~\overline{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.

χ_y, χ_z: Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z,

a los ejes Y y ∠, respectivamente.

 $\alpha_{\text{y}},\;\alpha_{\text{z}}\text{:}\;$ Factores dependientes de la clase de la sección.

 $\begin{array}{l}
 \bar{\lambda}_{\mathbf{y}} : & 1.11 \\
 \bar{\lambda}_{\mathbf{z}} : & 1.11 \\
 \alpha_{\mathbf{y}} : & 0.80 \\
 \alpha_{\mathbf{z}} : & 1.00
 \end{array}$

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

1.136 $t \le 65.569 t$

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 1.136 t $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 131.139 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: **0.009 √**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP+1.5 \cdot V(90^{\circ})H1+0.75 \cdot N(EI)$.

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}: \underline{0.017}_{\mathsf{t}}\cdot\mathsf{m}$

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 1.844 t⋅m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{140.00}$ cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2281.44}$ kp/cm²

Fecha: 02/03/21

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material.

γмo: 1.05

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.009 V

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N11, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.136 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.008 t⋅m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 131.139 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo.

 $V_{pl,Rd}$: 131.719 t

ττ,Ed: Tensiones tangenciales por torsión.

τ_{τ,Ed}: 5.80 kp/cm²

Siendo:

W_T: Módulo de resistencia a torsión.

W_T: 140.00 cm³

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 2395.51 kp/cm²

γмo: 1.05 γ_{M0}: Coeficiente parcial de seguridad del material.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.009

arquesina Fecha: 02/03/21

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N11, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.136 t

 $\mathbf{M}_{\mathsf{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T,Ed}}$: 0.008 t·m

El esfuerzo cortante resistente de cálculo reducido $\mathbf{V}_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 131.139 t

Donde:

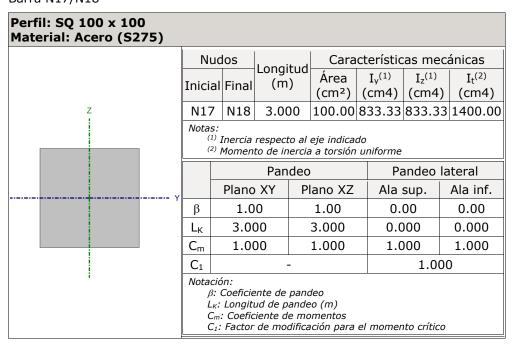
 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

 $τ_{T,Ed}$: Tensiones tangenciales por torsión. $τ_{T,Ed}$: 5.80 kp/cm²

Siendo:

 \mathbf{W}_{T} : Módulo de resistencia a torsión. \mathbf{W}_{T} : 140.00 cm³

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2281.44}$ kp/cm²


Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Barra N17/N18

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}:$ 1.11

3

A: 100.00 cm²

N_{cr}: 195.626 t

f_y: 2395.51 kp/cm²

Clase :

Fecha: 02/03/21

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 N_{cr} : Axil crítico de pandeo elástico.

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y. $\mathbf{N}_{cr,y}$: 195.626 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z. $N_{cr,z}$: 195.626 t

c) Axil crítico elástico de pandeo por torsión. $\mathbf{N}_{\mathsf{cr,T}}$:

Donde:

 $\mathbf{I}_{\mathbf{y}}$: Momento de inercia de la sección bruta, respecto al eje

I_v : <u>833.33</u> cm4

Fecha: 02/03/21

<i>3</i> cm4
00 cm4
<i>78</i> cm6
73 kp/cm ²
88 kp/cm ²
) m
7 m
) m
cm
cm
cm
mm
mm

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.004**

 \checkmark

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N17, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 0.865 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra. A: 100.00 cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : 2281.44 kp/cm²

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : $\underline{2395.51}$ kp/cm² γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Fecha: 02/03/21

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.008

η: 0.016

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N17, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.768 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

N_{c,Rd}: 228.144 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase : ____*3*

A: 100.00 cm² **f_{vd}**: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $f_y : \underline{2395.51}_{\text{MO}} \text{ kp/cm}^2$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $\mathbf{N}_{\mathbf{b},\mathbf{Rd}}$ en una barra comprimida viene dada por:

N_{b,Rd}: 109.681 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

A: 100.00 cm² **f**_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_y: 2395.51 kp/cm²

 γ_{M1} : 1.05

rquesina Fecha: 02/03/21

 $\chi_{\mathbf{y}}: 0.48$

 χ_z : 0.48

Siendo:

 $\phi_{y}: 1.33$

φ_z: 1.33

α: Coeficiente de imperfección elástica.

 α_y : 0.49

 α_z :

0.49

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{y}: 1.11$

 $\overline{\lambda}_z$: 1.11

 \mathbf{N}_{cr} : Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 195.626 t

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 195.626 t

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

N_{cr,T}: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.504**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N17, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

 $\mathbf{M_{Ed}}^+$: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{+} : 2.877 t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N17, para la combinación de acciones $1.35 \cdot PP+1.5 \cdot V(180^{\circ})H2+0.75 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 2.844 t·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $\mathbf{M_{c,Rd}}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 250.00 \text{ cm}^3$

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero.

f_{yd} : <u>2281.44</u> kp/cm²

Fecha: 02/03/21

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

γMo: Coeficiente parcial de seguridad del material. γMo: 1.05

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < 0.001 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N17, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(270^\circ)H1$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 $\mathbf{M_{Ed}}^+$: __0.001 __t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N17, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(90^\circ)H1$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^- : 0.001 t·m

El momento flector resistente de cálculo M_{c,Rd} viene dado por:

 $M_{c,Rd}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,z}: 250.00 \text{ cm}^3$

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0}

 $\gamma_{M0}: 1.05$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.009

 \checkmark

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N17, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.136 t

El esfuerzo cortante resistente de cálculo V_{c,Rd} viene dado por:

 $V_{c,Rd}$: 131.719 t

Donde:

 A_v : Área transversal a cortante.

 $A_v: 100.00 \text{ cm}^2$

Siendo:

h: Canto de la sección.t: Espesor de la chapa.

h: 100.00 mm **t**: 100.00 mm

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

f_y: 2395.51 kp/cm²

γ_{мо}: 1.05

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < **0.001**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.000 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

Fecha: 02/03/21

A_v: Área transversal a cortante. $A_v: 100.00 \text{ cm}^2$

Siendo:

h: Canto de la sección. **h**: 100.00 mm t: Espesor de la chapa. t: 100.00 mm

fyd: Resistencia de cálculo del acero. **f_{yd}**: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. 1.05 γмо∶

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante V_{c,Rd}.

1.136 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: 1.136 t **V**_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. V_{c,Rd}: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

0.000 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(90°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 0.000 t

V_{c,Rd}: Esfuerzo cortante resistente de cálculo. V_{c,Rd}: 131.719 t

Fecha: 02/03/21

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.755**

η: **0.769**

η: 0.619

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N17, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

Donde:

N_{c.Ed}: Axil de compresión solicitante de cálculo pésimo.

M_{v,Ed}, M_{z,Ed}: Momentos flectores solicitantes de cálculo pésimos, según los

ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y

flexión simple.

N_{pl.Rd}: Resistencia a compresión de la sección bruta.

Mel,Rd,y, Mel,Rd,z: Resistencia a flexión de la sección bruta en condiciones

elásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

Wel,y, Wel,z: Módulos resistentes elásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

f_{vd}: Resistencia de cálculo del acero.

N_{pl,Rd}: 228.144 t

Clase: *3*

N_{c,Ed}: 1.618 t

 $M_{y,Ed}^{-}$: 2.844 t·m

 $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}^{-}$: 0.000 t·m

M_{el,Rd,y}: 3.802 t⋅m

 $M_{el,Rd,z}$: 3.802 t·m

A: 100.00 cm²

 $W_{el,y}: 166.67 \text{ cm}^3$

W_{el,z}: 166.67 cm³

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

 $f_v: 2395.51 \text{ kp/cm}^2$

 $\gamma_{M1}: 1.05$

k_v, k_z: Coeficientes de interacción.

 k_y : 1.01

 k_z : 1.01

 $C_{m,v}$, $C_{m,z}$: Factores de momento flector uniforme equivalente.

1.00 $C_{m,y}$:

Fecha: 02/03/21

	C _{m,z} :	1.00
χ_y , χ_z : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z,	χ _ν :_	0.48
respectivamente.	χ z:_	0.48
$\overline{\lambda}_{\mathbf{y}}, \ \overline{\lambda}_{\mathbf{z}}$: Esbelteces reducidas con valores no mayores que 1.00, en relación	$\overline{\lambda}_{\mathbf{y}}$:	1.11
a los ejes Y y Z, respectivamente.	$\overline{\lambda}_z$:	1.11
$\alpha_{y}, \ \alpha_{z}$: Factores dependientes de la clase de la sección.	α_{y} :	0.80
	α_z :	1.00

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

1.136 t ≤ 65.569 t

1

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 1.136 t $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 131.139 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: 0.009

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(270^{\circ})H1 + 0.75 \cdot N(EI)$.

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}: 0.017 \ \text{t·m}$

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

 $M_{T,Rd}$: 1.844 t·m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{140.00}$ cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2281.44}$ kp/cm²

Fecha: 02/03/21

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : ____1.05_

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.009 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N17, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.136 t

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. $M_{T,Ed}$: 0.008 t·m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 131.139 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

 $\tau_{T,Ed}$: Tensiones tangenciales por torsión. $\tau_{T,Ed}$: 5.80 kp/cm²

Siendo:

 \mathbf{W}_{T} : Módulo de resistencia a torsión. \mathbf{W}_{T} : 140.00 cm³

fyd: Resistencia de cálculo del acero. fyd: 2281.44 kp/cm²

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. γ_{M0}: 1.05

Resistencia a cortante Y v momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.009

arquesina Fecha: 02/03/21

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N17, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.136 t

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}: \underline{0.008}_{\mathsf{t}}\cdot\mathsf{m}$

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 131.139 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

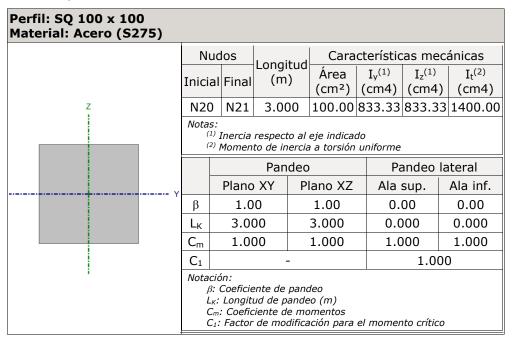
 $τ_{T,Ed}$: Tensiones tangenciales por torsión. $τ_{T,Ed}$: 5.80 kp/cm²

Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: 140.00 cm³

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero. $\mathbf{f}_{\mathbf{yd}}$: 2281.44 kp/cm²

Siendo:


 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Fecha: 02/03/21

Barra N20/N21

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

λ̄: 1.11 ✓

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

Clase: 3

A: 100.00 cm² **f**_v: 2395.51 kp/cm² **N**_{cr}: 195.626 t

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 195.626 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

c) Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Donde:

 $\mathbf{I_y}$: Momento de inercia de la sección bruta, respecto al eje

I_v: 833.33 cm4

Fecha: 02/03/21

	le inercia de la sección bruta, respecto al eje	-	022.22	
Z.	,	I _z :	833.33	cm4
I _t : Momento d	e inercia a torsión uniforme.	$\mathbf{I_t}$:	1400.00	cm4
$\mathbf{I_w}$: Constante	de alabeo de la sección.	\mathbf{I}_{w} :	27777.78	cm6
E: Módulo de e	elasticidad.	E :	2140673	kp/cm ²
G : Módulo de e	elasticidad transversal.	G :	825688	kp/cm ²
Lky: Longitud 6	efectiva de pandeo por flexión, respecto al eje			-
Υ.		$\mathbf{L}_{\mathbf{k}\mathbf{y}}$:	3.000	m
Lkz: Longitud e	efectiva de pandeo por flexión, respecto al eje			
Z.		$\mathbf{L}_{\mathbf{kz}}$:	3.000	m
Lkt: Longitud e	efectiva de pandeo por torsión.	$\mathbf{L}_{\mathbf{kt}}$:	0.000	m
io: Radio de gi	ro polar de la sección bruta, respecto al	-		-
centro de torsi	ón.	io:	4.08	cm
Siendo:				
i _y , i	z: Radios de giro de la sección bruta, respecto	i _y :	2.89	cm
a los	s ejes principales de inercia Y y Z.	i _z :	2.89	cm
У о,	z ₀ : Coordenadas del centro de torsión en la	y ₀ :	0.00	mm
	cción de los ejes principales Y y Z, ectivamente, relativas al centro de gravedad	-		-
de la	a sección.	Z ₀ :	0.00	mm

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.004** 🔻

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N20, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 0.865 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra.A: $\underline{100.00}$ cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : $\underline{2281.44}$ kp/cm²

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{2395.51}$ kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Fecha: 02/03/21

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.008

η: **0.016** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N20, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.752 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

N_{c,Rd}: 228.144 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase : ____*3*

A: 100.00 cm² **f_{vd}**: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_v: 2395.51 kp/cm²

умо: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 109.681 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 $\mathbf{f}_{\mathbf{vd}}$: Resistencia de cálculo del acero.

A: 100.00 cm² **f**_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_y: 2395.51 kp/cm²

γ_{M1}: 1.05

narquesina Fecha: 02/03/21

 $\chi\colon$ Coeficiente de reducción por pandeo.

 $\chi_{y}: 0.48$

χz:

Siendo:

φ_v: 1.33

0.48

φ_z: 1.33

α: Coeficiente de imperfección elástica.

 α_y : 0.49

0.49

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{y}: 1.11$

 $\overline{\lambda}_z$: 1.11

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 195.626 t

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,v}: 195.626 t

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

N_{cr,T}: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.493**

√

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N20, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 2.812 t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N20, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 2.741 t·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

 $\mathbf{M_{c,Rd}}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : 2

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 250.00 \text{ cm}^3$

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

f_{yd} : <u>2281.44</u> kp/cm²

Fecha: 02/03/21

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : ____1.05

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < **0.001**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N20, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 $\mathbf{M_{Ed}}^+$: 0.000 t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N20, para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(180^{\circ})H2 + 1.5 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^- : 0.001 t·m

El momento flector resistente de cálculo Mc,Rd viene dado por:

 $M_{c,Rd}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{pl,z}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,z}: 250.00 \text{ cm}^3$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.009

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N20, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.121 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

 A_v : Área transversal a cortante.

 A_v : 100.00 cm²

Siendo:

h: Canto de la sección. t: Espesor de la chapa. **h**: 100.00 mm t: 100.00 mm

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

0.000 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

arquesina Fecha: 02/03/21

 A_v : Área transversal a cortante. A_v : 100.00 cm²

Siendo:

h: Canto de la sección.h: $\underline{100.00}$ mmt: Espesor de la chapa.t: $\underline{100.00}$ mm

 f_{vd} : Resistencia de cálculo del acero. f_{vd} : 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

1.121 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^\circ)H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.121 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

 $0.000 t \le 65.860 t$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.000 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

quesina Fecha: 02/03/21

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.728**

η: **0.742** 🗸

η: **0.597**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N20, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

Donde:

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{y},\mathbf{Ed},}$ $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los

ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y

flexión simple.

 $N_{pl,Rd}$: Resistencia a compresión de la sección bruta.

 $\mathbf{M}_{\mathsf{el},\mathsf{Rd},\mathsf{y},}$ $\mathbf{M}_{\mathsf{el},\mathsf{Rd},\mathsf{z}}$: Resistencia a flexión de la sección bruta en condiciones

elásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

W_{el,y}, **W**_{el,z}: Módulos resistentes elásticos correspondientes a la fibra

comprimida, alrededor de los ejes Y y Z, respectivamente.

f_{vd}: Resistencia de cálculo del acero.

A: 100.00 cm²

N_{c,Ed}: 1.603 t

 $M_{y,Ed}^{-}$: 2.741 t·m

 $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}^{-}$: 0.000 t·m

 $N_{pl,Rd}: \underline{228.144}$ t $M_{el,Rd,y}: \underline{3.802}$ t·m

 $M_{el,Rd,z}$: 3.802 t·m

3

Clase :

 $W_{el,v}: 166.67 \text{ cm}^3$

 $W_{el,z}: 166.67 \text{ cm}^3$

f_{vd}: 2281.44 kp/cm²

 $f_v: 2395.51 \text{ kp/cm}^2$

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

γ_{м1}: 1.05

k_v, k_z: Coeficientes de interacción.

 k_y : 1.01

k_z: 1.01

 $C_{m,y}$:

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente.

y: 1.00

Fecha: 02/03/21

	C _{m,z} :	1.00
χ_y , χ_z : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z,	χ _y :	0.48
respectivamente.	χ _z :	0.48
$\overline{\lambda}_{y}, \ \overline{\lambda}_{z}$: Esbelteces reducidas con valores no mayores que 1.00, en relación	$\overline{\lambda}_{\mathbf{y}}$:	1.11
a los ejes Y y Z, respectivamente.	$\overline{\lambda}_z$:	1.11
α_y , α_z : Factores dependientes de la clase de la sección.	α_{y} :	0.80
	α _z :	1.00

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

1.121 $t \le 65.132 t$

/

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 1.121 t $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 130.263 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: 0.016 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^\circ)H2 + 0.75 \cdot N(EI)$.

 $\mathbf{M}_{\mathsf{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T,Ed}}$: 0.030 t·m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 1.844 t⋅m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{140.00}$ cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2281.44}$ kp/cm²

Fecha: 02/03/21

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2395.51 kp/cm²

γ_{м0}: Coeficiente parcial de seguridad del material.

умо: 1.05

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.009 v**

 \checkmark

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N20, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.121 t

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.020 t⋅m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 130.263 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo.

V_{pl,Rd}: 131.719 t

 $\tau_{T,Ed}$: Tensiones tangenciales por torsión.

τ_{T,Ed}: 14.56 kp/cm²

Siendo:

W_T: Módulo de resistencia a torsión.

W_T: 140.00 cm³

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.009

arquesina Fecha: 02/03/21

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N20, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.121 t

 $\mathbf{M}_{\mathsf{T,Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T,Ed}}$: 0.020 t·m

El esfuerzo cortante resistente de cálculo reducido $\mathbf{V}_{\mathbf{pl},\mathbf{T},\mathbf{Rd}}$ viene dado por:

V_{pl,T,Rd}: 130.263 t

Donde:

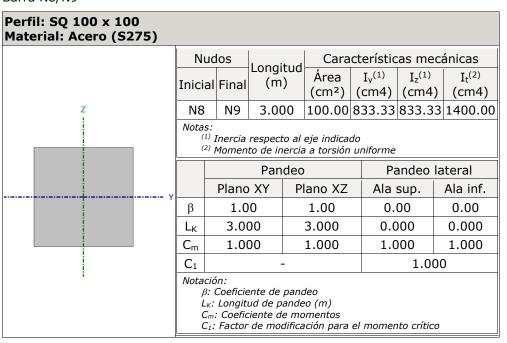
 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

 $au_{T,Ed}$: Tensiones tangenciales por torsión. $au_{T,Ed}$: 14.56 kp/cm²

Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: 140.00 cm³

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2281.44}$ kp/cm²


Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Barra N8/N9

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}:$ 1.11

Fecha: 02/03/21

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 N_{cr} : Axil crítico de pandeo elástico.

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

c) Axil crítico elástico de pandeo por torsión.

Clase : _____3

A: 100.00 cm² **f**_y: 2395.51 kp/cm²

N_{cr}: 195.626 t

N_{cr,y}: 195.626 t

N_{cr,z}: 195.626 t

 $N_{cr,T}$: ∞

Donde:

I_y: Momento de inercia de la sección bruta, respecto al eje

Υ.

I_v: 833.33 cm4

Fecha: 02/03/21

I _z : Momento de inercia de la sección bruta, respecto al eje	
Z.	I _z : 833.33 cm4
It: Momento de inercia a torsión uniforme.	I _t : 1400.00 cm4
I _w : Constante de alabeo de la sección.	I _w : <i>27777.78</i> cm6
E: Módulo de elasticidad.	E : 2140673 kp/cm ²
G : Módulo de elasticidad transversal.	G : 825688 kp/cm ²
L _{ky} : Longitud efectiva de pandeo por flexión, respecto al eje	
Υ.	L _{ky} : 3.000 m
$\mathbf{L}_{\mathbf{kz}}$: Longitud efectiva de pandeo por flexión, respecto al eje	
Z.	L_{kz} :m
L _{kt} : Longitud efectiva de pandeo por torsión.	L_{kt} : 0.000 m
io: Radio de giro polar de la sección bruta, respecto al	
centro de torsión.	i _o :4.08cm
Siendo:	
i _v , i _z : Radios de giro de la sección bruta, respecto	i_v : <i>2.8</i> 9 cm
a los ejes principales de inercia Y y Z.	i _z : 2.89 cm
y ₀ , z ₀ : Coordenadas del centro de torsión en la	
dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad	y_o : <u>0.00</u> mm
de la sección.	z₀ :0.00mm

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.004** 🔻

 \checkmark

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N8, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

 $\mathbf{N_{t,Ed}}$: Axil de tracción solicitante de cálculo pésimo. $\mathbf{N_{t,Ed}}$: 0.865 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra. A: 100.00 cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : 2281.44 kp/cm²

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2395.51 kp/cm² γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Fecha: 02/03/21

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.008

η: 0.016

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.752 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

N_{c,Rd}: 228.144 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase : ____*3*

A: 100.00 cm² **f_{vd}**: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

 $f_y: \underline{2395.51}_{\text{MMO}} \text{ kp/cm}^2$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 109.681 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

A: 100.00 cm² **f**_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_v: 2395.51 kp/cm²

 γ_{M1} : ___1.05

Fecha: 02/03/21

0.48 χ_{y} :

 χ_z : 0.48

Siendo:

 $\phi_{v}: 1.33$

1.33

α: Coeficiente de imperfección elástica.

0.49 α_v: 0.49

 α_z :

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{y}: 1.11$

 $\overline{\lambda}_z$: 1.11

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 195.626 t

N_{cr.v}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,v}: 195.626 t

N_{cr,z}: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

N_{cr,T}: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$:

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.493**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^+ : 2.812 t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 2.741 t·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 5.704 t⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase :

W_{pl,y}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 250.00 \text{ cm}^3$

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

fyd: 2281.44 kp/cm²

Fecha: 02/03/21

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underline{2395.51}$ kp/cm²

умо: Coeficiente parcial de seguridad del material. $_{\gamma M0}: _{1.05}$

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η < **0.001**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N8, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 $\mathbf{M_{Ed}}^+$: __0.001 __t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N8, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁻: 0.000 t⋅m

El momento flector resistente de cálculo M_{c,Rd} viene dado por:

 $M_{c,Rd}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,z}: 250.00 \text{ cm}^3$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.009

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.121 t

El esfuerzo cortante resistente de cálculo V_{c,Rd} viene dado por:

V_{c,Rd}: 131.719 t

Donde:

 A_v : Área transversal a cortante.

 $A_v: 100.00 \text{ cm}^2$

Siendo:

h: Canto de la sección.t: Espesor de la chapa.

h: <u>100.00</u> mm **t**: <u>100.00</u> mm

f_{vd} : 2281.44 kp/cm²

 $\mathbf{f_{vd}}$: Resistencia de cálculo del acero.

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

f_y: 2395.51 kp/cm²

γ_{мо}: 1.05

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < 0.001 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.000 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 131.719 t

Donde:

Fecha: 02/03/21

A_v: Área transversal a cortante. $A_v: 100.00 \text{ cm}^2$

Siendo:

h: Canto de la sección. **h**: 100.00 mm t: Espesor de la chapa. t: 100.00 mm

fyd: Resistencia de cálculo del acero. **f_{yd}**: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. 1.05 γмо∶

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante V_{c,Rd}.

1.121 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: 1.121 t **V**_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. V_{c,Rd}: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

0.000 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(0°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 0.000 t

V_{c,Rd}: Esfuerzo cortante resistente de cálculo. V_{c,Rd}: 131.719 t

Fecha: 02/03/21

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.728** 🗸

η: **0.742** 🗸

η: 0.597 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N8, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

Donde:

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo.

 $N_{c,Ed}$: 1.603 t $M_{y,Ed}$: 2.741 t·m

 $\mathbf{M}_{\mathbf{y}, \mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z}, \mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

M_{z,Ed}⁺ : 0.000 t⋅m

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

Clase : 3

N_{pl.Rd}: Resistencia a compresión de la sección bruta.

 $\mathbf{M_{el,Rd,y}}$, $\mathbf{M_{el,Rd,z}}$: Resistencia a flexión de la sección bruta en condiciones elásticas, respecto a los ejes Y y Z, respectivamente.

 $\mathbf{M_{el,Rd,y}}: \underline{3.802} \quad t \cdot m$ $\mathbf{M_{el,Rd,z}}: \underline{3.802} \quad t \cdot m$

N_{pl,Rd}: 228.144 t

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

A: 100.00 cm²

 $\mathbf{W}_{el,y}$, $\mathbf{W}_{el,z}$: Módulos resistentes elásticos correspondientes a la fibra comprimida, alrededor de los ejes Y y Z, respectivamente.

 $\mathbf{W}_{\text{el,y}}: \underline{166.67} \text{ cm}^3 \\ \mathbf{W}_{\text{el,z}}: \underline{166.67} \text{ cm}^3$

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 f_v : 2395.51 kp/cm²

 γ_{M1} : Coeficiente parcial de seguridad del material.

γ_{м1}: 1.05

k_v, k_z: Coeficientes de interacción.

 k_y : 1.01

 k_z : 1.01

 $C_{m,y}$, $C_{m,z}$: Factores de momento flector uniforme equivalente.

 $C_{m,y}: 1.00$

Fecha: 02/03/21

	C _{m,z} :	1.00
χ_y , χ_z : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z,	χ _y :_	0.48
respectivamente.	χ _z :	0.48
$\bar{\lambda}_y$, $\bar{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación		1.11
a los ejes Y y Z, respectivamente.	λ_{z} :	1.11
α_y , α_z : Factores dependientes de la clase de la sección.	α_{y} :	0.80

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{C},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

1.121 $t \le 65.132 t$

α_z :

1.00

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 1.121 t $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 130.263 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^\circ)H2 + 0.75 \cdot N(EI)$.

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}: 0.030 \quad \mathsf{t} \cdot \mathsf{m}$

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

 $M_{T,Rd}$: 1.844 t·m

Donde:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{140.00}$ cm³ $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2281.44}$ kp/cm²

Fecha: 02/03/21

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : ____1.05_

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.009 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N8, para la combinación de acciones $0.8 \cdot PP+1.5 \cdot V(180^{\circ})H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.121 t

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. $M_{T,Ed}$: 0.020 t·m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 130.263 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

 $τ_{T,Ed}$: Tensiones tangenciales por torsión. $τ_{T,Ed}$: 14.56 kp/cm²

Siendo:

 \mathbf{W}_{T} : Módulo de resistencia a torsión. \mathbf{W}_{T} : 140.00 cm³

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: 2281.44 kp/cm²

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.009 🗸

arquesina Fecha: 02/03/21

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N8, para la combinación de acciones $0.8 \cdot PP+1.5 \cdot V(180^{\circ})H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.121 t

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}: \underline{0.020}_{\mathsf{t}} \cdot \mathsf{m}$

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 130.263 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

 $au_{T,Ed}$: Tensiones tangenciales por torsión. $au_{T,Ed}$: 14.56 kp/cm²

Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: 140.00 cm³

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2281.44}$ kp/cm²

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

quesina Fecha: 02/03/21

Barra N23/N24

Perfil: SQ 100 x 100 Material: Acero (S275)							
	Nudos Características mecánicas						ánicas
	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
Z	N23	N24	3.000	100.00		, ,	1400.00
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme						
	Pandeo Pandeo lateral					iteral	
		Plano	XY F	lano XZ	Ala	sup.	Ala inf.
	β	1.0	0	1.00	0.	00	0.00
	L _K	3.00	00	3.000	0.0	000	0.000
	C _m	1.00	00	1.000	1.0	000	1.000
	C ₁ - 1.000						
,	L _K :	Coeficie Longit Coefic	ente de pan ud de pand iente de m de modific	eo (m) omentos	el momer	nto crítico	

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}$: 1.11 \checkmark

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

Clase: *3*

A: 100.00 cm² f_v : 2395.51 kp/cm²

N_{cr}: 195.626 t

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y.

 $N_{cr,y}$: 195.626 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

c) Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Donde:

 $\mathbf{I}_{\mathbf{y}}$: Momento de inercia de la sección bruta, respecto al eje

I_v: 833.33 cm4

Fecha: 02/03/21

I _z : Momento de inercia de la sección bruta, respecto al eje			
Z.	\mathbf{I}_{z} :	833.33	cm4
It: Momento de inercia a torsión uniforme.	$\mathbf{I_t}$:	1400.00	cm4
Iw: Constante de alabeo de la sección.	$\mathbf{I_w}$:	27777.78	cm6
E: Módulo de elasticidad.	E:	2140673	kp/cm ²
G : Módulo de elasticidad transversal.	G :	825688	kp/cm ²
L _{ky} : Longitud efectiva de pandeo por flexión, respecto al eje			
Υ.	L_{ky} :	3.000	m
L _{kz} : Longitud efectiva de pandeo por flexión, respecto al eje			
Z.	L_{kz} :	3.000	m
Lkt: Longitud efectiva de pandeo por torsión.	$\mathbf{L_{kt}}$:	0.000	m
i _o : Radio de giro polar de la sección bruta, respecto al			-
centro de torsión.	io:	4.08	cm
Siendo:			
i _y , i _z : Radios de giro de la sección bruta, respecto	i _y :	2.89	cm
a los ejes principales de inercia Y y Z.	i _z :	2.89	cm
$\mathbf{y_0}$, $\mathbf{z_0}$: Coordenadas del centro de torsión en la	y o:	0.00	mm
dirección de los ejes principales Y y Z,			
respectivamente, relativas al centro de gravedad de la sección.	7	0.00	mm
de la Seccion.	Z ₀ :	0.00	mm

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.004** 🔻

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N23, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

 $\mathbf{N_{t,Ed}}$: Axil de tracción solicitante de cálculo pésimo. $\mathbf{N_{t,Ed}}$: 0.863 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra.A: $\underline{100.00}$ cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : $\underline{2281.44}$ kp/cm²

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: $\underbrace{2395.51}_{0.5}$ kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Fecha: 02/03/21

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.008

η: 0.016 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N23, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.712 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

 $N_{c,Rd}$: 228.144 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

Clase: 3

A: Área de la sección bruta para las secciones de clase 1, 2 y 3. $\mathbf{f_{vd}}$: Resistencia de cálculo del acero.

A: 100.00 cm² **f_{yd}**: 2281.44 kp/cm²

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0} : Coeficiente parcial de seguridad del material.

 $f_y : 2395.51 \text{ kp/cm}^2$ $\gamma_{M0} : 1.05$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

 $N_{b,Rd}$: 109.681 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

A: 100.00 cm² **f**_{vd}: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_y: 2395.51 kp/cm²

γ_{M1}: 1.05

narquesina Fecha: 02/03/21

χ : Coeficiente de reducción por pandeo.

 $\chi_{y}: 0.48$

χ_z :

Siendo:

bv: 1.33

0.48

φ_z: 1.33

α: Coeficiente de imperfección elástica.

 α_y : 0.49

0.49

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{y}: 1.11$

 $\overline{\lambda}_z$: 1.11

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 195.626 t

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,v}: 195.626 t

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión

N_{cr,z}: 195.626 t

respecto al eje Z.

·----

 $\mathbf{N}_{\mathsf{cr},\mathsf{T}}$: Axil crítico elástico de pandeo por torsión.

N_{cr,T} :____∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.466**

√

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N23, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 2.656 t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N23, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 2.535 t·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

M_{c,Rd}: <u>5.704</u> t⋅m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : 2

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 250.00 \text{ cm}^3$

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero.

fyd: 2281.44 kp/cm²

Fecha: 02/03/21

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v: 2395.51 kp/cm²

умо: 1.05 γ_{Mo}: Coeficiente parcial de seguridad del material.

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N23, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 0.003 t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N23, para la combinación de acciones 0.8·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 0.002 t·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $M_{c,Rd}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{pl,z}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,z}: 250.00 \text{ cm}^3$

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.008

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N23, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.083 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

 A_v : Área transversal a cortante.

 A_v : 100.00 cm²

Siendo:

h: Canto de la sección. t: Espesor de la chapa. **h**: 100.00 mm t: 100.00 mm

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

0.001 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

arquesina Fecha: 02/03/21

 A_v : Área transversal a cortante. A_v : 100.00 cm²

Siendo:

h: Canto de la sección.h: $\underline{100.00}$ mmt: Espesor de la chapa.t: $\underline{100.00}$ mm

 f_{vd} : Resistencia de cálculo del acero. f_{vd} : 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

1.083 $t \le 65.860 t$

√

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^\circ)H2$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.083 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

 $0.001 t \le 65.860 t$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.001 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

Fecha: 02/03/21

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.700**

η: **0.697**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N23, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

Donde:

N_{t.Ed}: Axil de tracción solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{y},\mathbf{Ed}},\ \mathbf{M}_{\mathbf{z},\mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los

ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y

flexión simple.

N_{pl.Rd}: Resistencia a tracción.

Mel,Rd,y, Mel,Rd,z: Resistencia a flexión de la sección bruta en condiciones

elásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.1)

M_{ef.Ed}: Momento flector solicitante de cálculo pésimo.

N_{pl,Rd}: 228.144 t

Clase :

 $M_{el,Rd,y}$: 3.802 t·m

 $N_{t,Ed}$: 0.412 t

 $M_{y,Ed}^{+}$: 2.656 t·m

 $\mathbf{M}_{\mathbf{z},\mathbf{Ed}}^{-}$: 0.000 t·m

M_{el,Rd,z}: 3.802 t⋅m M_{ef.Ed}: 2.650 t⋅m

Siendo:

 $\sigma_{com,Ed}$: Tensión combinada en la fibra extrema comprimida.

 $\sigma_{com,Ed}$: 1590.10 kp/cm²

W_{v,com}: Módulo resistente de la sección referido a la fibra extrema comprimida, alrededor del eje Y.

A: Área de la sección bruta.

M_{b,Rd,v}: Momento flector resistente de cálculo.

 $W_{y,com}: 166.67 \text{ cm}^3$

A: 100.00 cm²

M_{b,Rd,y}: 3.802 t⋅m

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $V_{c,Rd}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

Fecha: 02/03/21

1.083 t ≤ 64.451 t

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{c,Rd,z}: Esfuerzo cortante resistente de cálculo.

V_{Ed,z}: 1.083 t V_{c,Rd,z}: 128.902 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: 0.029 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.054 t⋅m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 1.844 t⋅m

Donde:

W_T: Módulo de resistencia a torsión. f_{vd}: Resistencia de cálculo del acero. **W**_T: 140.00 cm³ **f_{vd}**: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. $\gamma_{M0}: 1.05$

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.008** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N23, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.083 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.039 t⋅m

Fecha: 02/03/21

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 128.902 t

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. **V_{pl,Rd}**: 131.719 t

ττ,Ed: Tensiones tangenciales por torsión. ττ,Ed: 28.17 kp/cm²

Siendo:

W_T: 140.00 cm³ **W**_T: Módulo de resistencia a torsión.

f_{vd}: Resistencia de cálculo del acero. fyd: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 2395.51 kp/cm²

γмo: 1.05 γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.008 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N23, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 1.083 t

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. **M**_{T,Ed}: 0.039 t⋅m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 128.902 t

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. V_{pl.Rd}: 131.719 t

τ_{T.Ed}: Tensiones tangenciales por torsión. ττ,Ed: 28.17 kp/cm²

Siendo:

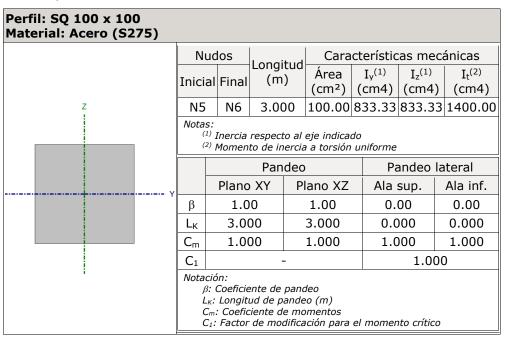
W_T: Módulo de resistencia a torsión. **W**_T: 140.00 cm³

fyd: Resistencia de cálculo del acero. fyd: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) $f_v: 2395.51 \text{ kp/cm}^2$

γ_{Mo}: Coeficiente parcial de seguridad del material.


умо: 1.05

Fecha: 02/03/21

marquesina Fecha: 02/03/21

Barra N5/N6

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\overline{\lambda}:$ 1.11

3

A: 100.00 cm²

N_{cr}: 195.626 t

f_y: 2395.51 kp/cm²

Clase :

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 N_{cr} : Axil crítico de pandeo elástico.

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y. N_{cr,y}: 195.626 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z. $N_{cr,z}$: 195.626 t

c) Axil crítico elástico de pandeo por torsión. $\mathbf{N}_{\mathbf{cr,T}}$:

Donde:

 $\mathbf{I}_{\mathbf{y}}$: Momento de inercia de la sección bruta, respecto al eje

I_v : __833.33 _ cm4

Fecha: 02/03/21

I _z : Momento de inercia de la sección bruta, respecto al eje	
Z.	I _z : 833.33 cm4
It: Momento de inercia a torsión uniforme.	I _t : 1400.00 cm4
$\mathbf{I_w}$: Constante de alabeo de la sección.	I _w : 27777.78 cm6
E: Módulo de elasticidad.	E : 2140673 kp/cm ²
G: Módulo de elasticidad transversal.	G : 825688 kp/cm ²
L _{ky} : Longitud efectiva de pandeo por flexión, respecto al eje	
Υ.	L_{ky} :3.000 _ m
L _{kz} : Longitud efectiva de pandeo por flexión, respecto al eje	
Z.	L_{kz} : 3.000 m
L _{kt} : Longitud efectiva de pandeo por torsión.	L _{kt} :0.000 m
io: Radio de giro polar de la sección bruta, respecto al	
centro de torsión.	i_o : <u>4.08</u> cm
Siendo:	
i _y , i _z : Radios de giro de la sección bruta, respecto	i_y : 2.89 cm
a los ejes principales de inercia Y y Z.	i_z : 2.89 cm
$\mathbf{y_0}$, $\mathbf{z_0}$: Coordenadas del centro de torsión en la	y₀ : 0.00 mm
dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad	
de la sección.	z₀ : 0.00 mm

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: **0.004**

√

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N5, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

 $\mathbf{N_{t,Ed}}$: Axil de tracción solicitante de cálculo pésimo. $\mathbf{N_{t,Ed}}$: 0.863 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra. A: 100.00 cm² f_{yd} : Resistencia de cálculo del acero. f_{yd} : 2281.44 kp/cm²

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2395.51 kp/cm² γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Fecha: 02/03/21

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.008

η: 0.016

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N5, para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(180^{\circ})H2 + 1.5 \cdot N(EI)$.

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.712 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

N_{c,Rd}: 228.144 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase : ____*3*

A: 100.00 cm² **f**_{vd}: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

 $f_y : \underline{2395.51}_{\text{MO}} \text{ kp/cm}^2$

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

N_{b,Rd}: 109.681 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

A: 100.00 cm² **f**_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

 $\mathbf{f_y}: \underline{2395.51} \text{ kp/cm}^2$

 γ_{M1} : ___1.05

rquesina Fecha: 02/03/21

χ: C	oeficient	e de	reducción	por	pandeo.
------	-----------	------	-----------	-----	---------

 $\chi_{y}: 0.48$

 χ_z : 0.48

Siendo:

 $\phi_{v}: 1.33$

φ_z: 1.33

α: Coeficiente de imperfección elástica.

α_y: 0.49

0.49

 $\bar{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{y}: 1.11$

αz:

 $\overline{\lambda}_z$: 1.11

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 195.626 t

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,y}: 195.626 t

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

N_{cr,T}: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}:$ ∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.466**

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N5, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 2.656 t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N5, para la combinación de acciones $1.35 \cdot PP+1.5 \cdot V(180^{\circ})H2+0.75 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 2.535 t·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

 $\mathbf{M_{c,Rd}}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 250.00 \text{ cm}^3$

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

f_{yd} : <u>2281.44</u> kp/cm²

Fecha: 02/03/21

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2395.51 kp/cm²

умо: Coeficiente parcial de seguridad del material. $_{\gamma M0}: _{1.05}$

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

 $\eta < 0.001 \checkmark$

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N5, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^\circ)H2 + 0.75 \cdot N(EI)$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

 $\mathbf{M_{Ed}}^+$: __0.002 __t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N5, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁻: 0.003 t⋅m

El momento flector resistente de cálculo Mc,Rd viene dado por:

 $M_{c,Rd}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase: 2

 $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

W_{pl,z}: 250.00 cm³

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material.

 γ_{MO} : 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.008

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N5, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.083 t

El esfuerzo cortante resistente de cálculo V_{c,Rd} viene dado por:

 $V_{c,Rd}$: 131.719 t

Donde:

 A_v : Área transversal a cortante.

 $A_v: 100.00 \text{ cm}^2$

Siendo:

h: Canto de la sección.t: Espesor de la chapa.

h: <u>100.00</u> mm **t**: <u>100.00</u> mm

f_{vd}: Resistencia de cálculo del acero.

f_{vd}: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

f_y: 2395.51 kp/cm²

γ**мо**: 1.05

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < **0.001**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(0°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.001 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 131.719 t

Donde:

Fecha: 02/03/21

A_v: Área transversal a cortante. $A_v: 100.00 \text{ cm}^2$

Siendo:

h: Canto de la sección. **h**: 100.00 mm t: Espesor de la chapa. t: 100.00 mm

fyd: Resistencia de cálculo del acero. **f_{yd}**: 2281.44 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 2395.51 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. 1.05 γмо∶

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante V_{c,Rd}.

1.083 $t \le 65.860 t$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 1.083 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. V_{c,Rd}: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

0.001 t ≤ 65.860 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(0°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 0.001 t

V_{c,Rd}: Esfuerzo cortante resistente de cálculo. V_{c,Rd}: 131.719 t

Fecha: 02/03/21

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.700

η: **0.697** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N5, para la combinación de acciones $0.8 \cdot PP+1.5 \cdot V(0^{\circ})H1$.

Donde:

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{y},\mathbf{Ed}},\ \mathbf{M}_{\mathbf{z},\mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los

ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y

flexión simple.

N_{pl,Rd}: Resistencia a tracción.

M_{el,Rd,y}, M_{el,Rd,z}: Resistencia a flexión de la sección bruta en condiciones

elásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.1)

Mef,Ed: Momento flector solicitante de cálculo pésimo.

Siendo:

 $\sigma_{com,Ed} \colon$ Tensión combinada en la fibra extrema comprimida.

W_{y,com}: Módulo resistente de la sección referido a la fibra extrema comprimida, alrededor del eje Y.

A: Área de la sección bruta.

M_{b,Rd,v}: Momento flector resistente de cálculo.

M_{z,Ed}⁺ : <u>0.000</u> t⋅m **Clase** : <u>3</u>

 $N_{t,Ed}$: 0.412 t

 $M_{y,Ed}^+$: 2.656 t·m

 $N_{pl,Rd}$: 228.144 t

 $egin{array}{ll} \mathbf{M_{el,Rd,y}} : & 3.802 \\ \mathbf{M_{el,Rd,z}} : & 3.802 \end{array} \ \mathrm{t\cdot m} \end{array}$

 $M_{ef,Ed}$: 2.650 t·m

 $\sigma_{com,Ed}$: 1590.10 kp/cm²

W_{y,com}: 166.67 cm³

A: 100.00 cm²

M_{b,Rd,y}: 3.802 t⋅m

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(180^{\circ})H2$.

Fecha: 02/03/21

1.083 t ≤ 64.451 t

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo.

 $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo.

V_{Ed,z}: 1.083 t V_{c,Rd,z}: 128.902 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: **0.029** 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.054 t⋅m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 1.844 t⋅m

Donde:

W_T: Módulo de resistencia a torsión. f_{vd}: Resistencia de cálculo del acero. **W**_T: 140.00 cm³

f_{vd}: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 $f_v: 2395.51 \text{ kp/cm}^2$

γ_{M0}: Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.008 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N5, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 1.083 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.039 t⋅m

narquesina Fecha: 02/03/21

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 128.902 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

 $τ_{T,Ed}$: Tensiones tangenciales por torsión. $τ_{T,Ed}$: 28.17 kp/cm²

Siendo:

 $\mathbf{W_T}$: Módulo de resistencia a torsión. $\mathbf{W_T}$: $\underline{140.00}$ cm³

 f_{yd} : Resistencia de cálculo del acero. f_{yd} : 2281.44 kp/cm²

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : ____1.05___

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N5, para la combinación de acciones 0.8·PP+1.5·V(180°)H2.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 1.083 t

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo. $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: 0.039 t·m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 128.902 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 131.719 t

 $τ_{T,Ed}$: Tensiones tangenciales por torsión. $τ_{T,Ed}$: 28.17 kp/cm²

Siendo:

 $\mathbf{W}_{\mathbf{T}}$: Módulo de resistencia a torsión. $\mathbf{W}_{\mathbf{T}}$: __140.00_ cm³

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero. $\mathbf{f}_{\mathbf{yd}}$: $\underline{2281.44}$ kp/cm²

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Página 353

Fecha: 02/03/21

Fecha: 02/03/21

Barra N24/N22

Perfil: HE 100 B Material: Acero (S275)							
	Νι	ıdos	Longituu	Cara	cterístic	as mec	ánicas
	Inicia	al Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
Z	N24	N22	2.816	26.00	449.50	167.30	9.25
Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme							
	Pandeo Pandeo lateral				eral		
		Plano	XY PI	ano XZ	Ala s	up. A	la inf.
	β	1.00)	1.00	0.9	9	1.00
	L _K	2.81	6 2	2.816	2.80	00 2	2.816
	C _m	1.00	0 :	1.000	1.00	00 :	1.000
	C ₁ - 1.000						
i	Ĺ	B: Coeficie K: Longit Cm: Coefic	ente de par ud de panc ciente de m de modific	leo (m) omentos	a el mome	ento crític	ro

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\bar{\lambda}$: 1.28

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de 1 Clase : desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

A: 26.00 cm² f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y: 2803.26 kp/cm² N_{cr}: Axil crítico de pandeo elástico. N_{cr}: 44.573 t

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y. N_{cr,y}: 119.759 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z. N_{cr,z}: 44.573 t

c) Axil crítico elástico de pandeo por torsión. N_{cr,T}: 359.908 t

Donde:

I_y: Momento de inercia de la sección bruta, respecto al eje Y. I_y: 449.50 cm4 I_z: Momento de inercia de la sección bruta, respecto al eje Z. I_z: 167.30 cm4

It: Momento de inercia a torsión uniforme. $\mathbf{I_t}$: 9.25 cm4 $I_w: 3380.00 \text{ cm}6$ **I**_w: Constante de alabeo de la sección. E: Módulo de elasticidad. **E**: 2140673 kp/cm²

G: Módulo de elasticidad transversal. **G**: 825688 kp/cm²

Lky: Longitud efectiva de pandeo por flexión, respecto al eje **L**_{ky}: 2.816 m

L_{kz}: Longitud efectiva de pandeo por flexión, respecto al eje Z. L_{kz}: 2.816

Lkt: Longitud efectiva de pandeo por torsión. **L**_{kt}: 2.816

io: Radio de giro polar de la sección bruta, respecto al centro de torsión. io: 4.87 cm

Siendo:

i_v , i_z: Radios de giro de la sección bruta, respecto 4.16 cm i_v: a los ejes principales de inercia Y y Z. 2.54 i_z: cm 0.00 mm

yo, zo: Coordenadas del centro de torsión en la **y**o: dirección de los ejes principales Y y Z, respectivamente, relativas al centro de gravedad de la sección.

mm 0.00 **Z**o:

Fecha: 02/03/21

Abolladura del alma inducida por el ala comprimida (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

13.33 ≤ 158.72 ✓

Donde:

hw: Altura del alma. 80.00 mm h_w: tw: Espesor del alma. 6.00 tw: mm Aw: Área del alma. 4.80 cm² A_w : **A**_{fc,ef}: Área reducida del ala comprimida. A_{fc,ef}: 10.00 cm² k: Coeficiente que depende de la clase de la sección. 0.30 **k** :

E: Módulo de elasticidad. E: 2140673 kp/cm² fyf: 2803.26 kp/cm²

f_{yf}: Límite elástico del acero del ala comprimida.

Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

Fecha: 02/03/21

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N22, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

 $\mathbf{N_{t,Ed}}$: Axil de tracción solicitante de cálculo pésimo. $\mathbf{N_{t,Ed}}$: 0.027 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

 $N_{t,Rd}$: 69.414 t

Donde:

A: Área bruta de la sección transversal de la barra. A: 26.00 cm^2 f_{yd} : Resistencia de cálculo del acero. f_{yd} : 2669.77 kp/cm^2

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2803.26 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η:__**0.002**__**V**

η: **0.004**

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N24, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

 $N_{c,Ed}$: Axil de compresión solicitante de cálculo pésimo. $N_{c,Ed}$: 0.117 t

La resistencia de cálculo a compresión $N_{c,Rd}$ viene dada por:

 $N_{c,Rd}$: 69.414 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero.

Clase: ____1

A: <u>26.00</u> cm² **f_{yd}**: 2669.77 kp/cm²

guesina Fecha: 02/03/21

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

f_y: <u>2803.26</u> kp/cm²

γмo: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $\mathbf{N}_{\mathbf{b},\mathbf{Rd}}$ en una barra comprimida viene dada por:

N_{b,Rd}: 27.621 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

A: <u>26.00</u> cm² **f**_{vd}: 2669.77 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

 $f_v : \underline{2803.26} \text{ kp/cm}^2$ $\gamma_{M1} : \underline{1.05}$

χ: Coeficiente de reducción por pandeo.

 $\chi_{y}: 0.74$

 $\chi_{z}: 0.40$

 $\chi_{\rm T}: 0.87$

Siendo:

 $\phi_{y}: 0.90$

φ_z: 1.58

фт: 0.66

α: Coeficiente de imperfección elástica.

 $\alpha_y : 0.34$ $\alpha_z : 0.49$

 α_T : 0.49

 $\overline{\lambda} \colon \mathsf{Esbeltez}\ \mathsf{reducida}.$

 $\overline{\lambda}_{\mathbf{y}}: 0.78$

 $\bar{\lambda}_z$: 1.28

 $\bar{\lambda}_T$: 0.45

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 44.573 t

N_{cr,y}: Axil crítico elástico de pandeo por flexión

respecto al eje Y.

N_{cr,y}: 119.759 t

 $\mathbf{N}_{\mathbf{cr,z}}$: Axil crítico elástico de pandeo por flexión

respecto al eje Z.

N_{cr,z}: 44.573 t

 $N_{\text{cr,T}}$: Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}: 359.908 t$

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

Fecha: 02/03/21

η: **0.482**

η: **0.565 √**

 M_{Ed}^{+} : 1.341 t·m

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N24, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N24, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $M_{c,Rd}$: 2.782 t·m

 M_{Ed}^{-} : 1.187 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl,y}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

 $W_{pl,v}: 104.20 \text{ cm}^3$

Clase: 1

f_{yd}: 2669.77 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

γ_{M0}: Coeficiente parcial de seguridad del material.

 f_v : 2803.26 kp/cm²

γмo: 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

El momento flector resistente de cálculo $M_{b,Rd}$ viene dado por:

 $M_{b,Rd}^{+}$: 2.373 t·m

 $M_{b,Rd}^{-}$: 2.370 t·m

Donde:

W_{pl.v}: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

 $W_{pl,y}: 104.20 \text{ cm}^3$

f_{yd}: 2669.77 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 2803.26 kp/cm²

arquesina Fecha: 02/03/21

γ_{M1} : Coeficiente parcial de seguridad del material. γ_{M1} :		1.05	
--	--	------	--

χ_{LT}: Factor de reducción por pandeo lateral.

χ_{LT}: 0.85

Siendo:

фLт: 0.79

 α_{LT} :

α_{LT}: Coeficiente de imperfección elástica.

 $\bar{\lambda}_{LT}$: 0.69

0.21

 $\mathbf{M_{cr}}$: Momento crítico elástico de pandeo lateral. $\mathbf{M_{cr}}^+$: 6.159 t·m

M_{cr}⁻:___*6.121*__t·n

El momento crítico elástico de pandeo lateral \mathbf{M}_{cr} se determina según la teoría de la elasticidad:

Siendo:

 $\mathbf{M}_{\mathbf{LTV}}$: Componente que representa la resistencia por torsión uniforme de la barra.

M_{LTv}^+ :	5.868	t∙m
---------------	-------	-----

M_{LTv}⁻: 5.835 t⋅m

M_{LTw}: Componente que representa la resistencia por torsión no uniforme de la barra.

M_{LTw}⁺: 1.870 t⋅m

M_{LTw}⁻: 1.849 t⋅m

I_z: 167.30 cm4

E: 2140673 kp/cm²

G: 825688 kp/cm²

cm³

cm4

 $W_{el,y}: 89.90$

I_t: 9.25

Siendo:

W_{el,y}: Módulo resistente elástico de la sección bruta, obtenido para la fibra más comprimida.

inorgia de la cocción bruta, recrueta al cie

 $\mathbf{I}_{\mathbf{z}} \text{:} \ \mathsf{Momento} \ \mathsf{de} \ \mathsf{inercia} \ \mathsf{de} \ \mathsf{la} \ \mathsf{secci\'{o}n} \ \mathsf{bruta}, \ \mathsf{respecto} \ \mathsf{al} \ \mathsf{eje} \ \mathsf{Z}.$

I_t: Momento de inercia a torsión uniforme.

E: Módulo de elasticidad.

G: Módulo de elasticidad transversal.

L_c⁺: Longitud efectiva de pandeo lateral del ala superior.

L_c⁻: Longitud efectiva de pandeo lateral del ala inferior.

C₁: Factor que depende de las condiciones de apoyo y de la forma de la ley de momentos flectores sobre la barra.

i_{f,z}: Radio de giro, respecto al eje de menor inercia de la sección, del soporte formado por el ala comprimida y la tercera parte de la zona comprimida del alma adyacente al ala comprimida.

 $\mathbf{L_{c}^{+}}: \underline{2.800} \quad \text{m} \\ \mathbf{L_{c}^{-}}: \underline{2.816} \quad \text{m}$

C₁: 1.00

i_{f,z}⁺: 2.78 cm

 $i_{f,z}^-$: 2.78 cm

Fecha: 02/03/21

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.084** 🗸

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N22, para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo. **M**_{Ed}⁺: 0.116 t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N22, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo. M_{Ed}^{-} : 0.085 t·m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

M_{c,Rd}: 1.373 t⋅m

Clase :

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

W_{pl,z}: Módulo resistente plástico correspondiente a la fibra con mayor $W_{pl,z}: 51.42 \text{ cm}^3$

tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero. **f_{yd}**: 2669.77 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 2803.26 kp/cm² γ_{M0}: Coeficiente parcial de seguridad del material. γмо: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.065

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N24, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V**_{Ed}: 0.904 t

rquesina Fecha: 02/03/21

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 13.873 t

Donde:

A_v: Área transversal a cortante.

 $A_v: 9.00 \text{ cm}^2$

Siendo:

.....

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero.

f_{yd}: 2669.77 kp/cm²

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 2803.26 kp/cm² γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

9.33 < 64.71

√

Donde:

 $\lambda_{\mathbf{w}}$: Esbeltez del alma. $\lambda_{\mathbf{w}}$: ____9.33

 $\lambda_{máx}$: Esbeltez máxima. $\lambda_{máx}$: 64.71

 ϵ : Factor de reducción. ϵ : 0.92

Siendo:

 $\begin{array}{ll} \textbf{f}_{\text{ref}}\text{: L\'imite el\'astico de referencia.} & \textbf{f}_{\text{ref}}\text{: } \underline{2395.51} \text{ kp/cm}^2 \\ \textbf{f}_{\text{y}}\text{: L\'imite el\'astico.} \text{ (CTE DB SE-A, Tabla 4.1)} & \textbf{f}_{\text{y}}\text{: } \underline{2803.26} \text{ kp/cm}^2 \end{array}$

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.003 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

 V_{Ed} : 0.082 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

 $V_{c,Rd}$: 32.678 t

Donde:

A_v: Área transversal a cortante.

 A_v : 21.20 cm²

Siendo:

A: Área de la sección bruta. d: Altura del alma. tw: Espesor del alma.

A: 26.00 cm² **d**: 80.00 mm **t**_w: 6.00 mm

f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 2669.77 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) γ_{M0}: Coeficiente parcial de seguridad del material. **f_v**: 2803.26 kp/cm²

γмo: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

0.904 t ≤ 6.936 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.904 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo.

V_{c,Rd}: 13.873 t

Fecha: 02/03/21

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo VEd no es superior al 50% de la resistencia de cálculo a cortante V_{c.Rd}.

 $0.082 t \le 16.339 t$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.082 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo.

 $V_{c,Rd}$: 32.678 t

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.542

η: **0.601**

η: **0.625**

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.051 m del nudo N24, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

Donde:

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

 $N_{c,Ed}$: 0.005 t $M_{y,Ed}^{+}$: 1.341 t·m

M_{v,Ed}, M_{z,Ed}: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

 $M_{z,Ed}^{+}: 0.082 \text{ t·m}$

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

Clase :

N_{pl,Rd}: Resistencia a compresión de la sección bruta.

 $N_{pl,Rd}$: 69.414 t $M_{pl,Rd,y}$: 2.782 t·m

M_{DI.Rd.v}, M_{DI.Rd.z}: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

 $M_{pl,Rd,z}$: 1.373 t·m

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

A: 26.00 cm² $W_{pl,v}: 104.20 \text{ cm}^3$

 $\mathbf{W}_{pl,y}$, $\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra

Fecha: 02/03/21

comprimida, alrededor de los ejes Y y Z, respectivamente.	$\mathbf{W}_{pl,z}$:	51.42	cm³
f _{yd} : Resistencia de cálculo del acero.	$\mathbf{f_{yd}}$:	2669.77	kp/cm ²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_v**: 2803.26 kp/cm² γ_{M1}: Coeficiente parcial de seguridad del material. γм1: 1.05

 $\mathbf{k_y}$, $\mathbf{k_z}$, $\mathbf{k_{y,LT}}$: Coeficientes de interacción.

 k_y : 1.00

k_z: 1.00

 $k_{y,LT}$: 1.00

$C_{m,y}$, $C_{m,z}$, $C_{m,LT}$: Factores de momento flector uniforme equivalente.	$C_{m,y}$:	1.00
	Cm 7 :	1.00

1.00 C_{m,LT}:

 χ_y , χ_z : Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, 0.74 χ_y: respectivamente.

χz: 0.40

χ_{LT}: Coeficiente de reducción por pandeo lateral.

 $\bar{\lambda}_y$, $\bar{\lambda}_z$: Esbelteces reducidas con valores no mayores que 1.00, en relación a los ejes Y y Z, respectivamente.

 α_{y} , α_{z} : Factores dependientes de la clase de la sección.

χ_{LT} : 0.85

 $\overline{\lambda}_{y}$: 0.78 $\bar{\lambda}_z$: 1.28

0.60

0.60 α_z :

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo V_{c,Rd}.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

 $0.904 t \le 6.919 t$

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed,z}**: 0.904 t V_{c.Rd.z}: Esfuerzo cortante resistente de cálculo. V_{c,Rd,z}: 13.837 t

Fecha: 02/03/21

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: 0.011

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

 $M_{T,Ed}$: 0.002 t·m

El momento torsor resistente de cálculo M_{T,Rd} viene dado por:

M_{T,Rd}: 0.143 t⋅m

Donde:

W_T: Módulo de resistencia a torsión. f_{vd}: Resistencia de cálculo del acero. $W_T: 9.25 \text{ cm}^3$ **f_{vd}**: 2669.77 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 2803.26 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. **умо**: 1.05

Resistencia a cortante Z v momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.065** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.051 m del nudo N24, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.904 t

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Momento torsor solicitante de cálculo pésimo.

 $M_{T,Ed}$: 0.001 t·m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 13.837 t

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. **V**_{pl,Rd}: 13.873 t

ττ,Ed: Tensiones tangenciales por torsión. τ_{τ,Ed}: 9.73 kp/cm²

Fecha: 02/03/21

Siendo:

W_T: 9.25 cm³ W_T: Módulo de resistencia a torsión.

f_{vd}: Resistencia de cálculo del acero. **f_{yd}**: 2669.77 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f_y**: 2803.26 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. γмo: 1.05

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: 0.003 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 0.082 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo. M_{T,Ed}: 0.001 t⋅m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 32.547 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. **V**_{pl,Rd}: 32.678 t

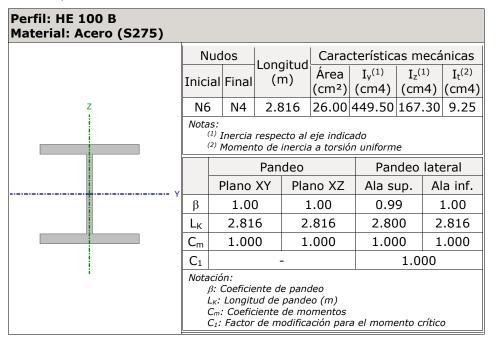
 $\tau_{\text{T,Ed}}$: 15.41 kp/cm² τ_{T,Ed}: Tensiones tangenciales por torsión.

Siendo:

W_T: Módulo de resistencia a torsión. **W**_T: 9.25 cm³

f_{vd}: Resistencia de cálculo del acero. **f_{yd}**: 2669.77 kp/cm²

Siendo:


f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2803.26 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{м0}: 1.05

Fecha: 02/03/21

Barra N6/N4

<u>Limitación de esbeltez</u> (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

 $\bar{\lambda}$: 1.28

1

A: 26.00 cm²

N_{cr}: 44.573 t

 f_v : 2803.26 kp/cm²

Clase :

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y. N_{cr,y}: 119.759 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z. N_{cr,z}: 44.573 t

c) Axil crítico elástico de pandeo por torsión. $N_{cr,T}$: 359.908 t

Donde:

I_V: Momento de inercia de la sección bruta, respecto al eje Y. **I_y**: 449.50 cm4 $\mathbf{I}_{\mathbf{z}}$: Momento de inercia de la sección bruta, respecto al eje Z. I_z: 167.30 cm4

Fecha: 02/03/21

$\mathbf{I_t}$: Momento	o de inercia a torsión uniforme.	$\mathbf{I_t}$:	9.25	cm4
$\mathbf{I_w}$: Constan	te de alabeo de la sección.	$\mathbf{I}_{\mathbf{w}}$:	3380.00	cm6
E : Módulo d	e elasticidad.	E:	2140673	kp/cm ²
G : Módulo d	le elasticidad transversal.	G :	825688	kp/cm ²
	d efectiva de pandeo por flexión, respecto al eje	_		_
Υ.		L _{ky} :	2.816	m
L_{kz}: Longitu	d efectiva de pandeo por flexión, respecto al eje			
Z.		L_{kz} :	2.816	m
L kt: Longitud	d efectiva de pandeo por torsión.	L_{kt} :	2.816	m
i₀: Radio de	giro polar de la sección bruta, respecto al centro			
de torsión.		io:	4.87	cm
Siendo				
			4.16	cm
•	, i _z : Radios de giro de la sección bruta, respecto los ejes principales de inercia Y y Z.	İy:		-
		i _z :	2.54	cm
-	, z ₀ : Coordenadas del centro de torsión en la	y o:	0.00	mm
	rección de los ejes principales Y y Z, espectivamente, relativas al centro de gravedad			
de	e la sección.	z_0 :	0.00	mm

<u>Abolladura del alma inducida por el ala comprimida</u> (Criterio de CYPE Ingenieros, basado en: Eurocódigo 3 EN 1993-1-5: 2006, Artículo 8)

Se debe satisfacer:

13.33 ≤ 158.72 √

Donde:

h_w: 80.00 mm **h**_w: Altura del alma. t_w : tw: Espesor del alma. 6.00 mm A_w : Área del alma. A_w : 4.80 cm² **A**_{fc,ef}: 10.00 cm² Afc,ef: Área reducida del ala comprimida. k: Coeficiente que depende de la clase de la sección. **k** : 0.30 E: 2140673 kp/cm² E: Módulo de elasticidad. $\mathbf{f}_{\mathbf{yf}}$: Límite elástico del acero del ala comprimida. **f**_{yf}: 2803.26 kp/cm² Siendo:

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η < 0.001 🗸

Fecha: 02/03/21

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N4, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

N_{t,Ed}: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 0.027 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 69.414 t

Donde:

A: Área bruta de la sección transversal de la barra. **A**: 26.00 cm² \mathbf{f}_{yd} : Resistencia de cálculo del acero. **f_{yd}**: 2669.77 kp/cm²

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 2803.26 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. **умо**: 1.05

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.002 1

η: **0.004**

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N6, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo. **N_{c,Ed}**: 0.117 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

N_{c,Rd}: 69.414 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 $\mathbf{f}_{\mathbf{yd}}$: Resistencia de cálculo del acero.

Clase : 1

> A: 26.00 cm² **f_{yd}**: 2669.77 kp/cm²

Fecha: 02/03/21

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2803.26 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $\mathbf{N}_{\mathbf{b},\mathbf{Rd}}$ en una barra comprimida viene dada por:

N _{b,Rd} :	27.621	τ
		-

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

A: 26.00 cm²

 $\mathbf{f_{yd}}$: Resistencia de cálculo del acero. $\mathbf{f_{yd}}$: $\underline{2669.77}$ kp/cm²

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2803.26 kp/cm²

 γ_{M1} : Coeficiente parcial de seguridad del material. γ_{M1} : 1.05

χ: Coeficiente de reducción por pandeo.

 $\frac{\chi_{\mathsf{V}}: 0.74}{\gamma_{\mathsf{z}}: 0.40}$

χτ : <u>0.87</u>

 α : Coeficiente de imperfección elástica. $\alpha_{v}: 0.34$ $\alpha_{z}: 0.49$

 $\alpha_{ extsf{T}}$: Esbeltez reducida.

 N_{cr} : Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores: N_{cr} : 44.573 t

 $N_{cr,y}$: Axil crítico elástico de pandeo por flexión respecto al eje Y. $N_{cr,y}$: 119.759 t

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión respecto al eje Z. $N_{cr,z}$: 44.573 t

 $\mathbf{N}_{\mathbf{cr},\mathbf{T}}$: Axil crítico elástico de pandeo por torsión. $\mathbf{N}_{\mathbf{cr},\mathbf{T}}$: 359.908 t

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

Fecha: 02/03/21

η: **0.482** 🔻

η: **0.565** 🗸

M_{Ed}⁺: 1.341 t⋅m

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N6, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N6, para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(180^{\circ})H2 + 1.5 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $M_{c,Rd}$: 2.782 t·m

 $\mathbf{M}_{\mathbf{Ed}^{-}}$: 1.187 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathbf{pl},\mathbf{y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

fyd: Resistencia de cálculo del acero.

W_{pl.v}: 104.20 cm³

Clase :

f_{vd}: 2669.77 kp/cm²

1

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_y: 2803.26 kp/cm²

умо: 1.05

Resistencia a pandeo lateral: (CTE DB SE-A, Artículo 6.3.3.2)

El momento flector resistente de cálculo $M_{b,Rd}$ viene dado por:

 $M_{b,Rd}^{+}$: 2.373 t·m

 $M_{b,Rd}$: 2.370 t·m

Donde:

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

 $W_{pl,y}: 104.20 \text{ cm}^3$

f_{yd} : <u>2669.77</u> kp/cm²

Siendo:

 f_v : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 2803.26 kp/cm²

Fecha: 02/03/21

γ _{M1} : Coeficiente parcial de seguridad del material.	γм1 :	1.05

χ_{LT}: Factor de reducción por pandeo lateral.

0.85 χцт:

Siendo:

0.79 **ф**LT :

α_{LT}: Coeficiente de imperfección elástica.

M_{cr}: Momento crítico elástico de pandeo lateral.

αLT : 0.21

 $\overline{\lambda}_{LT}$:

 M_{cr}^{+} : 6.159 t·m M_{cr}^{-} : 6.121 t·m

0.69

El momento crítico elástico de pandeo lateral M_{cr} se determina según la teoría de la elasticidad:

Siendo:

MLTv: Componente que representa la resistencia por torsión uniforme de la barra.

M_{LTv}⁺: 5.868 t⋅m

M_{LTv}⁻: 5.835 t⋅m

M_{LTw}: Componente que representa la resistencia por torsión no uniforme de la barra.

 M_{LTw}^{+} : 1.870 t·m

M_{LTw}⁻: 1.849 t⋅m

Siendo:

Wel,y: Módulo resistente elástico de la sección bruta, obtenido para la fibra más comprimida.

 $W_{el,y}: 89.90$ cm³

I_z: Momento de inercia de la sección bruta, respecto al eje Z.

I_t: Momento de inercia a torsión uniforme. E: Módulo de elasticidad.

G: Módulo de elasticidad transversal.

L_c+: Longitud efectiva de pandeo lateral del ala superior. L_c: Longitud efectiva de pandeo lateral del ala inferior.

C1: Factor que depende de las condiciones de apoyo y de la forma de la ley de momentos flectores sobre la barra.

if,z: Radio de giro, respecto al eje de menor inercia de la sección, del soporte formado por el ala comprimida y la tercera parte de la zona comprimida del alma adyacente al ala comprimida.

I_z: 167.30 cm4

I_t: 9.25 cm4 **E**: 2140673 kp/cm²

G: 825688 kp/cm²

 L_c^+ : 2.800 L_{c}^{-} : 2.816 m

 $C_1: 1.00$

i_{f,z}+ : 2.78 cm

 $i_{f,z}^-: 2.78$ cm

Fecha: 02/03/21

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.084** γ

 \checkmark

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N4, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

 M_{Ed}^+ : Momento flector solicitante de cálculo pésimo. M_{Ed}^+ : ___0.085__ t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N4, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo. M_{Ed}⁻: 0.116 t⋅m

El momento flector resistente de cálculo $M_{c,Rd}$ viene dado por:

 $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}: \underline{1.373} \ \mathrm{t\cdot m}$

Clase :

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

 $\mathbf{W}_{\mathbf{pl},\mathbf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor $\mathbf{W}_{\mathbf{pl},\mathbf{z}}$: 51.42 cm³

tensión, para las secciones de clase 1 y 2.

 f_{yd} : Resistencia de cálculo del acero. f_{yd} : 2669.77 kp/cm²

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_y}$: 2803.26 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η: 0.065

V

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 0.051 m del nudo N6, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^\circ)H1$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.904 t

Fecha: 02/03/21

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 13.873 t

Donde:

A_v: Área transversal a cortante.

 A_v : 9.00 cm²

Siendo:

A: Área bruta de la sección transversal de la barra. A: 26.00 cm² **b**: Ancho de la sección. **b**: 100.00 mm t_f: Espesor del ala. t_f: 10.00 mm **t**_w: 6.00 mm **t**_w: Espesor del alma. **r**: 12.00 mm

r: Radio de acuerdo entre ala y alma.

f_{yd}: 2669.77 kp/cm²

f_{vd}: Resistencia de cálculo del acero.

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) f_v : 2803.26 kp/cm²

умо: 1.05 γ_{M0} : Coeficiente parcial de seguridad del material.

Abolladura por cortante del alma: (CTE DB SE-A, Artículo 6.3.3.4)

Aunque no se han dispuesto rigidizadores transversales, no es necesario comprobar la resistencia a la abolladura del alma, puesto que se cumple:

9.33 < 64.71

Donde:

 λ_w : Esbeltez del alma. $\lambda_{\mathbf{w}}$: 9.33

λ_{máx}: Esbeltez máxima. $\lambda_{\text{máx}}$: 64.71

ε: Factor de reducción. ε: 0.92

Siendo:

fref: Límite elástico de referencia. f_{ref}: 2395.51 kp/cm² **f_y**: 2803.26 kp/cm² f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: **0.003** 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.082 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 32.678 t

Donde:

A_v: Área transversal a cortante.

 $A_v: 21.20 \text{ cm}^2$

Siendo:

A: Área de la sección bruta. d: Altura del alma. tw: Espesor del alma.

A: 26.00 cm² **d**: 80.00 mm

t_w: 6.00 mm

f_{yd}: Resistencia de cálculo del acero.

f_{yd}: 2669.77 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 2803.26 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material.

γмo: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

0.904 t ≤ 6.936 t

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.904 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo.

V_{c,Rd}: 13.873 t

Fecha: 02/03/21

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante V_{c.Rd}.

 $0.082 t \le 16.339 t$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed}: 0.082 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. **V_{c,Rd}**: 32.678 t

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.542**

n: **0.601**

n: **0.625**

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.051 m del nudo N6, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

Donde:

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

M_{v,Ed}, M_{z,Ed}: Momentos flectores solicitantes de cálculo pésimos, según los ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y flexión simple.

N_{pl,Rd}: Resistencia a compresión de la sección bruta.

 $\mathbf{M}_{pl,Rd,y}$, $\mathbf{M}_{pl,Rd,z}$: Resistencia a flexión de la sección bruta en condiciones plásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.2)

A: Área de la sección bruta.

 $\mathbf{W}_{pl,y}$, $\mathbf{W}_{pl,z}$: Módulos resistentes plásticos correspondientes a la fibra

N_{c,Ed}: 0.005 t $M_{y,Ed}^{+}$: 1.341 t·m

 $M_{z,Ed}^-$: 0.082 t·m

Clase: 1

N_{pl,Rd}: 69.414 t

 $M_{pl,Rd,y}$: 2.782 t·m $M_{pl,Rd,z}$: 1.373 t·m

A: 26.00 cm² $W_{pl,v}: 104.20 \text{ cm}^3$

rquesina Fecha: 02/03/21

f _{yd} : Resistencia de cálculo del acero.	f _{yd} : 2669.77 kp/cm ²
Siendo:	
$\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)	f _y : <u>2803.26</u> kp/cm ²

 $\mathbf{k_y},\ \mathbf{k_z},\ \mathbf{k_{y,LT}}$: Coeficientes de interacción.

comprimida, alrededor de los ejes Y y Z, respectivamente.

 γ_{M1} : Coeficiente parcial de seguridad del material.

	k _y :1.00
	k _z :1.00
	k _{y,LT} :1.00
$C_{m,y},\ C_{m,z},\ C_{m,LT}$: Factores de momento flector uniforme equivalente.	C _{m,y} : 1.00 C _{m,z} : 1.00 C _{m,LT} : 1.00
$\chi_{y},~\chi_{z} :$ Coeficientes de reducción por pandeo, alrededor de los ejes Y y Z, respectivamente.	$\chi_{\mathbf{y}}: \underline{0.74}$ $\chi_{\mathbf{z}}: \underline{0.40}$

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo $\mathbf{V}_{\mathbf{Ed}}$ es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathbf{c},\mathbf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

0.904 t ≤ 6.919 t

 $W_{pl.z}: 51.42 \text{ cm}^3$

γ**м1**: 1.05

Donde:

 $V_{Ed,z}$: Esfuerzo cortante solicitante de cálculo pésimo. $V_{Ed,z}$: 0.904 t $V_{c,Rd,z}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd,z}$: 13.837 t

Fecha: 02/03/21

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: 0.011

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 0.9 \cdot V(180^\circ)H2 + 1.5 \cdot N(EI)$.

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo.

 $M_{T,Ed}$: 0.002 t·m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

 $\mathbf{M}_{\mathsf{T},\mathsf{Rd}}: \underline{0.143} \mathsf{t} \cdot \mathsf{m}$

Donde:

 \mathbf{W}_{T} : Módulo de resistencia a torsión. \mathbf{f}_{vd} : Resistencia de cálculo del acero.

 $W_T : 9.25 \text{ cm}^3$ $f_{vd} : 2669.77 \text{ kp/cm}^2$

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_y: 2803.26 kp/cm²

γ_{Mo}: Coeficiente parcial de seguridad del material.

γмo: 1.05

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.065** 🔻

Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 0.051 m del nudo N6, para la combinación de acciones $0.8 \cdot PP + 1.5 \cdot V(0^{\circ})H1$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.904 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

 $M_{T,Ed}$: 0.001 t·m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 13.837 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{pl,Rd}$: 13.873 t

 $τ_{T,Ed}$: Tensiones tangenciales por torsión. $τ_{T,Ed}$: 9.73 kp/cm²

Fecha: 02/03/21

Siendo:

W_T: 9.25 cm³ W_T: Módulo de resistencia a torsión. **f_{yd}**: 2669.77 kp/cm²

f_{vd}: Resistencia de cálculo del acero.

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2803.26 kp/cm²

γ_{M0}: Coeficiente parcial de seguridad del material. γмo: 1.05

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.003** ✓

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.082 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.001 t⋅m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

V_{pl,T,Rd}: 32.547 t

Donde:

 $V_{pl,Rd}$: Esfuerzo cortante resistente de cálculo.

 $V_{pl,Rd}$: 32.678 t

τ_{T,Ed}: Tensiones tangenciales por torsión.

 $\tau_{T,Ed}$: 15.41 kp/cm²

Siendo:

W_T: Módulo de resistencia a torsión.

W_T: 9.25 cm³

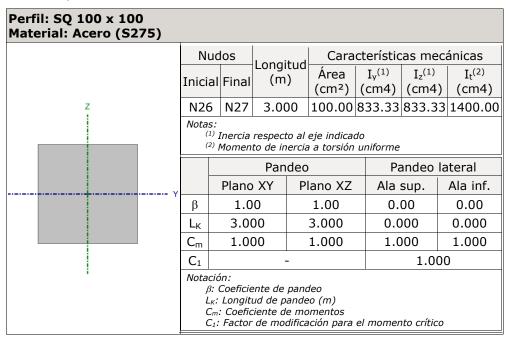
f_{vd}: Resistencia de cálculo del acero.

f_{yd}: 2669.77 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 $\mathbf{f_v}$: 2803.26 kp/cm²


 γ_{M0} : Coeficiente parcial de seguridad del material.

γ_{м0}: 1.05

arquesina Fecha: 02/03/21

Barra N26/N27

Limitación de esbeltez (CTE DB SE-A, Artículos 6.3.1 y 6.3.2.1 - Tabla 6.3)

La esbeltez reducida $\bar{\lambda}$ de las barras comprimidas debe ser inferior al valor 2.0.

λ̄: 1.11 ✓

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1)

N_{cr}: Axil crítico de pandeo elástico.

Clase: *3*

A: 100.00 cm² f_y : 2395.51 kp/cm²

N_{cr}: 195.626 t

El axil crítico de pandeo elástico N_{cr} es el menor de los valores obtenidos en a), b) y c):

a) Axil crítico elástico de pandeo por flexión respecto al eje Y. N_{cr,y}

N_{cr,y}: 195.626 t

b) Axil crítico elástico de pandeo por flexión respecto al eje Z.

N_{cr,z}: 195.626 t

c) Axil crítico elástico de pandeo por torsión.

 $N_{cr,T}$: ∞

Donde:

 $\mathbf{I_y}$: Momento de inercia de la sección bruta, respecto al eje

I_v: 833.33 cm4

Fecha: 02/03/21

	nto de inercia de la sección bruta, respecto al eje		022.22	1
Z.		I _z :	833.33	cm4
	nto de inercia a torsión uniforme.	I_t :	1400.00	cm4
Iw: Const	ante de alabeo de la sección.	\mathbf{I}_{w} :	27777.78	cm6
E: Módulo	o de elasticidad.	E :	2140673	kp/cm ²
G : Módulo	o de elasticidad transversal.	G :	825688	kp/cm ²
L _{ky} : Long Y.	itud efectiva de pandeo por flexión, respecto al eje	L _{ky} :	3.000	m
L _{kz} : Long	itud efectiva de pandeo por flexión, respecto al eje	-ky .		
Z.		L _{kz} :	3.000	m
L kt: Longi	itud efectiva de pandeo por torsión.	L_{kt} :	0.000	m
io: Radio	de giro polar de la sección bruta, respecto al			
centro de	torsión.	i ₀ :	4.08	cm
Sien	do:			
	i _y , i _z : Radios de giro de la sección bruta, respecto	i _y :	2.89	cm
	a los ejes principales de inercia Y y Z.	i _z :	2.89	cm
	y₀ , z₀ : Coordenadas del centro de torsión en la dirección de los ejes principales Y y Z,	y ₀ :	0.00	mm
	respectivamente, relativas al centro de gravedad de la sección.	z ₀ :	0.00	mm

Resistencia a tracción (CTE DB SE-A, Artículo 6.2.3)

Se debe satisfacer:

η: 0.003 🗸

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.948 m del nudo N26, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo. $N_{t,Ed}$: 0.583 t

La resistencia de cálculo a tracción $N_{t,Rd}$ viene dada por:

N_{t,Rd}: 228.144 t

Donde:

A: Área bruta de la sección transversal de la barra. A: 100.00 cm² \mathbf{f}_{yd} : Resistencia de cálculo del acero. fyd: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

γ**мо**: 1.05 γ_{M0}: Coeficiente parcial de seguridad del material.

Fecha: 02/03/21

Resistencia a compresión (CTE DB SE-A, Artículo 6.2.5)

Se debe satisfacer:

η: 0.005

η: **0.010** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N26, para la combinación de acciones 1.35·PP+0.9·V(180°)H2+1.5·N(EI).

N_{c,Ed}: Axil de compresión solicitante de cálculo pésimo.

N_{c,Ed}: 1.103 t

La resistencia de cálculo a compresión N_{c,Rd} viene dada por:

 $N_{c,Rd}$: 228.144 t

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos comprimidos de una sección.

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

f_{vd}: Resistencia de cálculo del acero.

Clase : ____*3*

A: 100.00 cm² **f_{vd}**: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M0} : Coeficiente parcial de seguridad del material.

f_v: 2395.51 kp/cm²

умо: 1.05

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.2)

La resistencia de cálculo a pandeo $N_{b,Rd}$ en una barra comprimida viene dada por:

 $N_{b,Rd}$: 109.681 t

Donde:

A: Área de la sección bruta para las secciones de clase 1, 2 y 3.

 \mathbf{f}_{vd} : Resistencia de cálculo del acero.

A: 100.00 cm² **f_{vd}**: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

 γ_{M1} : Coeficiente parcial de seguridad del material.

f_y: 2395.51 kp/cm²

γ_{M1}: 1.05

arquesina Fecha: 02/03/21

 $\chi\colon$ Coeficiente de reducción por pandeo.

 $\chi_{\mathbf{y}}: 0.48$

χz:

Siendo:

φ_v: 1.33

0.48

φ_z: 1.33

α: Coeficiente de imperfección elástica.

 α_y : 0.49

0.49

 $\overline{\lambda}$: Esbeltez reducida.

 $\overline{\lambda}_{y}: 1.11$

 $\overline{\lambda}_z$: 1.11

N_{cr}: Axil crítico elástico de pandeo, obtenido como el menor de los siguientes valores:

N_{cr}: 195.626 t

N_{cr,y}: Axil crítico elástico de pandeo por flexión respecto al eje Y.

N_{cr,v}: 195.626 t

 $N_{cr,z}$: Axil crítico elástico de pandeo por flexión

N_{cr,z}: 195.626 t

respecto al eje Z.

 $\mathbf{N}_{\mathsf{cr},\mathsf{T}}$: Axil crítico elástico de pandeo por torsión.

N_{cr,T} :____∞

Resistencia a flexión eje Y (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: 0.412

√

Para flexión positiva:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N26, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

M_{Ed}⁺: Momento flector solicitante de cálculo pésimo.

M_{Ed}⁺: 2.352 t⋅m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N26, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

M_{Ed}⁻: Momento flector solicitante de cálculo pésimo.

 M_{Ed}^{-} : 2.110 t·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathbf{c},\mathbf{Rd}}$ viene dado por:

 $\mathbf{M_{c,Rd}}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una sección a flexión simple.

Clase : 2

 $\mathbf{W}_{\text{pl,y}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

 $W_{pl,y}: 250.00 \text{ cm}^3$

 \mathbf{f}_{yd} : Resistencia de cálculo del acero.

f_{yd} : <u>2281.44</u> kp/cm²

Fecha: 02/03/21

Siendo:

f_y: Límite elástico. (CTE DB SE-A, Tabla 4.1) **f**_y: 2395.51 kp/cm²

Resistencia a flexión eje Z (CTE DB SE-A, Artículo 6.2.6)

Se debe satisfacer:

η: **0.002 √**

Para flexión positiva:

 $\mathbf{M}_{\mathbf{Ed}}^+$: Momento flector solicitante de cálculo pésimo. $\mathbf{M}_{\mathbf{Ed}}^+$: 0.000 t·m

Para flexión negativa:

El esfuerzo solicitante de cálculo pésimo se produce en un punto situado a una distancia de 2.949 m del nudo N26, para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

 \mathbf{M}_{Ed} : Momento flector solicitante de cálculo pésimo. \mathbf{M}_{Ed} : 0.014 t·m

El momento flector resistente de cálculo $\mathbf{M}_{\mathsf{c},\mathsf{Rd}}$ viene dado por:

 $M_{c,Rd}$: 5.704 t·m

Donde:

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de los elementos planos de una

sección a flexión simple.

 $\mathbf{W}_{\mathsf{pl},\mathsf{z}}$: Módulo resistente plástico correspondiente a la fibra con mayor tensión, para las secciones de clase 1 y 2.

f_{vd}: Resistencia de cálculo del acero.

W_{pl,z}: 250.00 cm³

2

f_{yd}: 2281.44 kp/cm²

Siendo:

 $\mathbf{f_v}$: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}$: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material. γ_{M0} : 1.05

Resistencia a corte Z (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

Fecha: 02/03/21

η: 0.006 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N26, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.796 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

A_v: Área transversal a cortante.

 $A_v: 100.00 \text{ cm}^2$

Siendo:

h: Canto de la sección.t: Espesor de la chapa.

h: 100.00 mm **t**: 100.00 mm

f_{vd}: Resistencia de cálculo del acero.

 f_{yd} : 2281.44 kp/cm²

Siendo:

 $\mathbf{f_y}$: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: ___1.05_

Resistencia a corte Y (CTE DB SE-A, Artículo 6.2.4)

Se debe satisfacer:

η < 0.001 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

 V_{Ed} : 0.006 t

El esfuerzo cortante resistente de cálculo $V_{c,Rd}$ viene dado por:

V_{c,Rd}: 131.719 t

Donde:

A_v: Área transversal a cortante.

 $A_{v}: 100.00 \text{ cm}^{2}$

Fecha: 02/03/21

Siendo:

h: Canto de la sección.h: $\underline{100.00}$ mmt: Espesor de la chapa.t: $\underline{100.00}$ mm

f_{yd}: Resistencia de cálculo del acero. **f**_{yd}:

f_{yd}: 2281.44 kp/cm²

Siendo:

 f_y : Límite elástico. (CTE DB SE-A, Tabla 4.1) f_y : 2395.51 kp/cm²

 $γ_{M0}$: Coeficiente parcial de seguridad del material. $γ_{M0}$: 1.05

Resistencia a momento flector Y y fuerza cortante Z combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

0.796 t ≤ 65.860 t

√

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : 0.796 t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

Resistencia a momento flector Z y fuerza cortante Y combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir la resistencia de cálculo a flexión, ya que el esfuerzo cortante solicitante de cálculo pésimo V_{Ed} no es superior al 50% de la resistencia de cálculo a cortante $V_{c,Rd}$.

 $0.006 t \le 65.860 t$

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones $1.35 \cdot PP + 1.5 \cdot V(180^{\circ})H2 + 0.75 \cdot N(EI)$.

 V_{Ed} : Esfuerzo cortante solicitante de cálculo pésimo. V_{Ed} : ___0.006__ t

 $V_{c,Rd}$: Esfuerzo cortante resistente de cálculo. $V_{c,Rd}$: 131.719 t

Fecha: 02/03/21

Resistencia a flexión y axil combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.620**

n: **0.618**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N26, para la combinación de acciones 0.8·PP+1.5·V(0°)H1.

Donde:

 $N_{t,Ed}$: Axil de tracción solicitante de cálculo pésimo.

 $\mathbf{M}_{\mathbf{y}, \mathbf{Ed}}$, $\mathbf{M}_{\mathbf{z}, \mathbf{Ed}}$: Momentos flectores solicitantes de cálculo pésimos, según los ejes \mathbf{y} y \mathbf{z} respectivamente

ejes Y y Z, respectivamente.

Clase: Clase de la sección, según la capacidad de deformación y de desarrollo de la resistencia plástica de sus elementos planos, para axil y

flexión simple.

 $N_{pl,Rd}$: Resistencia a tracción.

 $\mathbf{M}_{el,Rd,y}$, $\mathbf{M}_{el,Rd,z}$: Resistencia a flexión de la sección bruta en condiciones

elásticas, respecto a los ejes Y y Z, respectivamente.

Resistencia a pandeo: (CTE DB SE-A, Artículo 6.3.4.1)

Mef,Ed: Momento flector solicitante de cálculo pésimo.

 $\mathbf{N}_{\mathsf{pl},\mathsf{Rd}}: \underline{228.144} \ \mathsf{t}$ $\mathbf{M}_{\mathsf{el},\mathsf{Rd},\mathsf{y}}: \underline{3.802} \ \mathsf{t} \cdot \mathsf{m}$

M_{el,Rd,z}: 3.802 t⋅m

 $egin{aligned} \mathbf{N_{t,Ed}} : & \underline{0.266} & t \\ \mathbf{M_{y,Ed}}^+ : & \underline{2.352} & t \cdot m \end{aligned}$

 $M_{z,Ed}^{+}: 0.002 \text{ t·m}$

Clase :

Mef,Ed: 2.349 t⋅m

Siendo:

 $\sigma_{com,Ed}$: Tensión combinada en la fibra extrema comprimida.

W_{y,com}: Módulo resistente de la sección referido a la fibra

extrema comprimida, alrededor del eje Y.

A: Área de la sección bruta.M_{b,Rd,y}: Momento flector resistente de cálculo.

W_{y,com}: 166.67 cm³

A: 100.00 cm²

 $\sigma_{com,Ed}$: 1409.27 kp/cm²

 $M_{b,Rd,y}: 3.802 \text{ t·m}$

Resistencia a flexión, axil y cortante combinados (CTE DB SE-A, Artículo 6.2.8)

No es necesario reducir las resistencias de cálculo a flexión y a axil, ya que se puede ignorar el efecto de abolladura por esfuerzo cortante y, además, el esfuerzo cortante solicitante de cálculo pésimo \mathbf{V}_{Ed} es menor o igual que el 50% del esfuerzo cortante resistente de cálculo $\mathbf{V}_{\mathsf{c},\mathsf{Rd}}$.

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

Fecha: 02/03/21

 $0.796 t \le 65.627 t$

Donde:

V_{Ed,z}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{c,Rd,z}: Esfuerzo cortante resistente de cálculo.

V_{Ed,z}: 0.796 t V_{c,Rd,z}: 131.254 t

Resistencia a torsión (CTE DB SE-A, Artículo 6.2.7)

Se debe satisfacer:

η: **0.021 √**

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.5·V(180°)H2+0.75·N(EI).

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.039 t⋅m

El momento torsor resistente de cálculo $M_{T,Rd}$ viene dado por:

M_{T,Rd}: 1.844 t⋅m

Donde:

W_T: Módulo de resistencia a torsión. f_{vd}: Resistencia de cálculo del acero.

W_T: 140.00 cm³ **f_{vd}**: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1)

f_v: 2395.51 kp/cm²

 γ_{M0} : Coeficiente parcial de seguridad del material.

 $\gamma_{M0}: 1.05$

Resistencia a cortante Z y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.006** 🗸

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N26, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo.

V_{Ed}: 0.796 t

M_{T,Ed}: Momento torsor solicitante de cálculo pésimo.

M_{T,Ed}: 0.007 t⋅m

Fecha: 02/03/21

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 131.254 t

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. **V**_{pl,Rd}: 131.719 t

ττ,Ed: 4.65 kp/cm² ττ,Ed: Tensiones tangenciales por torsión.

Siendo:

W_T: 140.00 cm³ \mathbf{W}_{T} : Módulo de resistencia a torsión.

f_{vd}: Resistencia de cálculo del acero. fyd: 2281.44 kp/cm²

Siendo:

fy: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}: 2395.51 \text{ kp/cm}^2$

γмo: 1.05 γ_{M0} : Coeficiente parcial de seguridad del material.

Resistencia a cortante Y y momento torsor combinados (CTE DB SE-A, Artículo 6.2.8)

Se debe satisfacer:

η: **0.006 √**

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N26, para la combinación de acciones 0.8·PP+1.5·V(270°)H1.

V_{Ed}: Esfuerzo cortante solicitante de cálculo pésimo. **V_{Ed}**: 0.796 t

 $M_{T,Ed}$: Momento torsor solicitante de cálculo pésimo. $M_{T,Ed}$: 0.007 t·m

El esfuerzo cortante resistente de cálculo reducido $V_{pl,T,Rd}$ viene dado por:

 $V_{pl,T,Rd}$: 131.254 t

Donde:

V_{pl.Rd}: Esfuerzo cortante resistente de cálculo. V_{pl.Rd}: 131.719 t

τ_{T.Ed}: Tensiones tangenciales por torsión. тт,**Ed**: 4.65 kp/cm²

Siendo:

W_T: Módulo de resistencia a torsión. **W**_T: 140.00 cm³

fyd: Resistencia de cálculo del acero. fyd: 2281.44 kp/cm²

Siendo:

f_v: Límite elástico. (CTE DB SE-A, Tabla 4.1) $\mathbf{f_v}: 2395.51 \text{ kp/cm}^2$

γ_{мo}: Coeficiente parcial de seguridad del material.

умо: 1.05

Fecha: 02/03/21

narquesina Fecha: 02/03/21

2.3.2.5.- Comprobaciones E.L.U. (Resumido)

Barras	COMPROBACIONES (CTE DB SE-A)													Estado		
Dallas	$\bar{\lambda}$	λ_w	Nt	Nc	M _Y	Mz	Vz	V_{Y}	M_YV_Z	$M_{Z}V_{Y}$	NM_YM_Z	$NM_YM_ZV_YV_Z\\$	Mt	M_tV_Z	M_tV_Y	ESIAUO
N3/N1	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.816 m η = 0.1	x: 0.051 m $\eta = 0.3$	x: 0.051 m η = 47.2	x: 2.816 m $\eta = 6.6$	x: 0.051 m η = 4.4	η = 0.2	η < 0.1	η < 0.1	x: 0.051 m η = 52.3	η < 0.1	η = 1.4	x: 0.051 m η = 4.5	η = 0.2	CUMPLE η = 52.3
N6/N4	$\begin{array}{c} \bar{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	x: 2.816 m η < 0.1	x: 0.051 m η = 0.4	x: 0.051 m η = 56.5	x: 2.816 m η = 8.4	x: 0.051 m η = 6.5	η = 0.3	η < 0.1	η < 0.1	x: 0.051 m η = 62.5	η < 0.1	η = 1.1	x: 0.051 m η = 6.5	η = 0.3	CUMPLE η = 62.5
N9/N7	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.816 m η < 0.1	x: 0.051 m η = 0.4	x: 0.051 m η = 57.6	x: 2.816 m η = 4.7	x: 0.051 m η = 6.5	η = 0.1	η < 0.1	η < 0.1	x: 0.051 m η = 60.4	η < 0.1	η = 0.6	x: 0.051 m η = 6.5	η = 0.1	CUMPLE η = 60.4
N12/N10	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.816 m η < 0.1	x: 0.051 m η = 0.4	x: 0.051 m η = 57.9	x: 2.816 m η = 1.9	x: 0.051 m η = 6.5	η = 0.1	η < 0.1	η < 0.1	x: 0.051 m η = 59.4	η < 0.1	η = 0.1	x: 0.051 m η = 6.5	η = 0.1	CUMPLE η = 59.4
N15/N13	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	N _{Ed} = 0.00 N.P. ⁽¹⁾	x: 0.051 m η = 0.4	x: 0.051 m η = 57.9	x: 0.051 m η = 1.4	x: 0.051 m η = 6.5	η < 0.1	η < 0.1	η < 0.1	x: 0.051 m η = 58.0	η < 0.1	M _{Ed} = 0.00 N.P. ⁽²⁾	N.P. ⁽³⁾	N.P. ⁽³⁾	CUMPLE η = 58.0
N18/N16	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.816 m η < 0.1		x: 0.051 m η = 57.9	x: 2.816 m η = 1.9	x: 0.051 m η = 6.5	η = 0.1	η < 0.1	η < 0.1	x: 0.051 m η = 59.4	η < 0.1	η = 0.1	x: 0.051 m η = 6.5	η = 0.1	CUMPLE n = 59.4
N21/N19	$\bar{\lambda}$ < 2.0 Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple		x: 0.051 m η = 0.4	x: 0.051 m η = 57.6	x: 2.816 m η = 4.7	x: 0.051 m η = 6.5	η = 0.1	η < 0.1	η < 0.1	x: 0.051 m η = 60.4	η < 0.1	η = 0.6	x: 0.051 m η = 6.5	η = 0.1	CUMPLE n = 60.4
N24/N22	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.816 m η < 0.1	x: 0.051 m η = 0.4	x: 0.051 m η = 56.5	x: 2.816 m η = 8.4	x: 0.051 m η = 6.5	η = 0.3	η < 0.1	η < 0.1	x: 0.051 m η = 62.5	η < 0.1	η = 1.1	x: 0.051 m η = 6.5	η = 0.3	CUMPLE η = 62.5
N27/N25	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	x: 2.816 m η = 0.1		x: 0.051 m η = 47.2	x: 2.816 m η = 6.6	x: 0.051 m η = 4.4	η = 0.2	η < 0.1	η < 0.1	x: 0.051 m η = 52.3	η < 0.1	η = 1.4	x: 0.051 m η = 4.5	η = 0.2	CUMPLE η = 52.3
N3/N6	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.1	η = 0.2	x: 2.45 m η = 0.8	x: 0.05 m η = 8.8	x: 2.45 m η = 0.3	η = 0.3	η < 0.1	η < 0.1	x: 0.05 m η = 9.1	η < 0.1	η = 0.8	x: 2.45 m η = 0.3	η = 0.3	CUMPLE η = 9.1
N6/N9	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.2	η = 0.5	x: 2.45 m η = 0.6	x: 2.45 m η = 5.0	x: 2.45 m η = 0.3	η = 0.2	η < 0.1	η < 0.1	x: 2.45 m η = 5.9	η < 0.1	η = 0.6	x: 2.45 m η = 0.3	η = 0.2	CUMPLE η = 5.9
N9/N12	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 0.2	η = 0.6	x: 2.45 m η = 0.5	x: 2.45 m η = 2.5	x: 2.45 m η = 0.3	η = 0.1	η < 0.1	η < 0.1	x: 2.45 m η = 3.4	η < 0.1	η = 0.2	x: 2.45 m η = 0.3	η = 0.1	CUMPLE η = 3.4
N12/N15	$\bar{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 0.2	η = 0.7	x: 2.45 m η = 0.5	x: 2.45 m η = 0.9	x: 2.45 m η = 0.2	η < 0.1	η < 0.1	η < 0.1	x: 2.45 m η = 1.9	η < 0.1	η = 0.1	x: 2.45 m η = 0.2	η < 0.1	CUMPLE η = 1.9
N15/N18	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 0.2	η = 0.7	x: 0.05 m η = 0.5	x: 0.05 m η = 0.9	x: 0.05 m η = 0.2	η < 0.1	η < 0.1	η < 0.1	x: 0.05 m η = 1.9	η < 0.1	η = 0.1	x: 0.05 m η = 0.2	η < 0.1	CUMPLE η = 1.9
N18/N21	$\overline{\lambda} < 2.0$ Cumple	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.2	η = 0.6	x: 0.05 m η = 0.5	x: 0.05 m η = 2.5	x: 0.05 m η = 0.3	η = 0.1	η < 0.1	η < 0.1	x: 0.05 m η = 3.4	η < 0.1	η = 0.2	x: 0.05 m η = 0.3	η = 0.1	CUMPLE η = 3.4
N1/N4	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.1	η = 0.2	x: 2.5 m η = 3.8	x: 0 m η = 6.6	x: 0 m η = 0.5	η = 0.2	η < 0.1	η < 0.1	x: 2.5 m η = 9.2	η < 0.1	η = 1.3	x: 0 m η = 0.5	η = 0.2	CUMPLE η = 9.2
N4/N7	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.2	η = 0.3	x: 0 m η = 4.1	x: 2.5 m η = 4.1	x: 0 m η = 0.4	η = 0.1	η < 0.1	η < 0.1	x: 2.5 m η = 6.7	η < 0.1	η = 0.9	x: 0 m η = 0.4	η = 0.1	CUMPLE η = 6.7
N7/N10	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.3	η = 0.4	x: 0.625 m η = 3.0	x: 2.5 m η = 2.1	x: 2.5 m η = 0.4	η < 0.1	η < 0.1	η < 0.1	x: 1.667 m η = 3.8	η < 0.1	η = 0.4	x: 2.5 m η = 0.4	η < 0.1	CUMPLE η = 3.8
N10/N13	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 0.3	η = 0.5	x: 1.042 m η = 1.8	x: 0 m η = 0.9	x: 2.5 m η = 0.3	η < 0.1	η < 0.1	η < 0.1	x: 1.25 m η = 2.5	η < 0.1	η = 0.1	x: 0 m η = 0.3	η < 0.1	CUMPLE η = 2.5
N13/N16	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 0.3	η = 0.5	x: 1.458 m η = 1.8	x: 2.5 m η = 0.9	x: 0 m η = 0.3	η < 0.1	η < 0.1	η < 0.1	x: 1.25 m η = 2.5	η < 0.1	η = 0.1	x: 2.5 m η = 0.3	η < 0.1	CUMPLE η = 2.5
N16/N19	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 0.3	η = 0.4	x: 1.875 m η = 3.0	x: 0 m η = 2.1	x: 0 m η = 0.4	η < 0.1	η < 0.1	η < 0.1	x: 0.833 m η = 3.8	η < 0.1	η = 0.4	x: 0 m η = 0.4	η < 0.1	CUMPLE η = 3.8
N21/N24	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,m\acute{a}x}$ Cumple	η = 0.2	η = 0.5	x: 0.05 m η = 0.6	x: 0.05 m η = 5.0	x: 0.05 m η = 0.3	η = 0.2	η < 0.1	η < 0.1	x: 0.05 m η = 5.9	η < 0.1	η = 0.6	x: 0.05 m η = 0.3	η = 0.2	CUMPLE η = 5.9
N19/N22	$\begin{array}{c} \bar{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.2	η = 0.3	x: 2.5 m η = 4.1	x: 0 m η = 4.1	x: 2.5 m η = 0.4	η = 0.1	η < 0.1	η < 0.1	x: 0 m η = 6.7	η < 0.1	η = 0.9	x: 2.5 m η = 0.4	η = 0.1	CUMPLE η = 6.7
N24/N27	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \le \lambda_{w,máx}$ Cumple	η = 0.1	η = 0.2	x: 0.05 m η = 0.8	x: 2.45 m η = 8.8	x: 0.05 m η = 0.3	η = 0.3	η < 0.1	η < 0.1	x: 2.45 m η = 9.1	η < 0.1	η = 0.8	x: 0.05 m η = 0.3	η = 0.3	CUMPLE η = 9.1
N22/N25	$\begin{array}{l} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	$\lambda_w \leq \lambda_{w,m\acute{a}x}$ Cumple	η = 0.1	η = 0.2	x: 0 m η = 3.8	x: 2.5 m η = 6.6	x: 2.5 m η = 0.5	η = 0.2	η < 0.1	η < 0.1	x: 0 m η = 9.2	η < 0.1	η = 1.3	x: 2.5 m η = 0.5	η = 0.2	CUMPLE η = 9.2

Barras	COMPROBACIONES (CTE DB SE-A)											Estado			
DdlldS	$\bar{\lambda}$	$N_{\rm t}$	Nc	M_{Y}	Mz	Vz	V_{Y}	M_YV_Z	$M_{Z}V_{Y}$	NM_YM_Z	$NM_YM_ZV_YV_Z\\$	$M_{\rm t}$	$M_t V_Z \\$	$M_t V_Y \\$	EStado
N2/N3	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	x: 2.948 m η = 0.3	x: 0 m η = 1.0	x: 0 m η = 41.2	x: 2.949 m η = 0.2	x: 0 m η = 0.6	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 62.0	•	$\eta = 2.1$	$\eta = 0.6$	$\eta = 0.6$	CUMPLE η = 62.0
N5/N6	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	x: 2.948 m η = 0.4	x: 0 m η = 1.6	x: 0 m η = 46.6	x: 2.948 m η < 0.1	x: 0 m η = 0.8	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 70.0	η < 0.1	η = 2.9	x: 0 m η = 0.8	x: 0 m η = 0.8	CUMPLE η = 70.0
N8/N9	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	x: 2.948 m η = 0.4	x: 0 m η = 1.6	x: 0 m η = 49.3	x: 2.948 m η < 0.1	x: 0 m η = 0.9	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 74.2		η – 1.0	$\eta = 0.9$	$\eta = 0.9$	CUMPLE η = 74.2
N11/N12	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	x: 2.948 m	x: 0 m	x: 0 m	x: 2.948 m η < 0.1	x: 0 m η = 0.9	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 76.9			$\eta = 0.9$	$\eta = 0.9$	CUMPLE η = 76.9
N14/N15	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	x: 2.948 m η = 0.4	x: 0 m η = 1.6	x: 0 m η = 50.7	x: 2.948 m η < 0.1	x: 0 m η = 0.9	η < 0.1	η < 0.1	x: 0 m η < 0.1	x: 0 m η = 77.7			$\eta = 0.6$	$\eta = 0.6$	CUMPLE η = 77.7
N17/N18	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	x: 2.948 m η = 0.4	x: 0 m η = 1.6	x: 0 m η = 50.4	x: 2.948 m η < 0.1	x: 0 m η = 0.9	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 76.9		η = 0.9	x: 0 m η = 0.9	x: 0 m η = 0.9	CUMPLE η = 76.9
N20/N21	$\begin{array}{c} \overline{\lambda} < 2.0 \\ Cumple \end{array}$	x: 2.948 m	x: 0 m	x: 0 m					η < 0.1		'		$\eta = 0.9$	$\eta = 0.9$	CUMPLE η = 74.2
N23/N24	$\begin{array}{c} \overline{\lambda} < 2.0 \\ \text{Cumple} \end{array}$	x: 2.948 m η = 0.4	x: 0 m η = 1.6	x: 0 m η = 46.6	x: 2.948 m η < 0.1	x: 0 m η = 0.8	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 70.0			1 - 0.0	II	CUMPLE η = 70.0
N26/N27	$\bar{\lambda} < 2.0 \\ Cumple$	x: 2.948 m η = 0.3	x: 0 m η = 1.0	x: 0 m η = 41.2	x: 2.949 m η = 0.2	x: 0 m η = 0.6	η < 0.1	η < 0.1	η < 0.1	x: 0 m η = 62.0		η = 2.1	x: 0 m η = 0.6	x: 0 m η = 0.6	CUMPLE η = 62.0

Fecha: 02/03/21

Notación:

 $\bar{\lambda}$: Limitación de esbeltez

λw: Abolladura del alma inducida por el ala comprimida

N_t: Resistencia a tracción

N_c: Resistencia a compresión

M_Y: Resistencia a flexión eje Y

Mz: Resistencia a flexión eje Z Vz: Resistencia a corte Z

Vy: Resistencia a corte Y

 M_YV_Z : Resistencia a momento flector Y y fuerza cortante Z combinados

 M_ZV_Y : Resistencia a momento flector Z y fuerza cortante Y combinados

NM_YM_Z: Resistencia a flexión y axil combinados

NM_YM_ZV_YV_Z: Resistencia a flexión, axil y cortante combinados

M_t: Resistencia a torsión

 M_tV_Z : Resistencia a cortante Z y momento torsor combinados M_tV_Y : Resistencia a cortante Y y momento torsor combinados x: Distancia al origen de la barra

η: Coeficiente de aprovechamiento (%) N.P.: No procede

Comprobaciones que no proceden (N.P.):

- (1) La comprobación no procede, ya que no hay axil de tracción.
- (2) La comprobación no procede, ya que no hay momento torsor.
- (3) No hay interacción entre momento torsor y esfuerzo cortante para ninguna combinación. Por lo tanto, la comprobación no procede.

Fecha: 02/03/21